SAND2001-3515
Unlimited Release
Updated April 2003
Updated July 2004

DAKOTA, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis

Version 3.2 Reference Manual

Michael S. Eldred, Laura P. Swiler, David M. Gay, Shannon L. Brown
Optimization and Uncertainty Estimation Department

Anthony A. Giunta
Validation and Uncertainty Quantification Processes Department

Steven F. Wojtkiewicz, Jr.
Structural Dynamics and Smart Systems Department

William E. Hart, Jean-Paul Watson
Discrete Algorithms and Math Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA con-
tains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification
with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least
squares methods; and sensitivity analysis with design of experiments and parameter study methods. These
capabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design
and performance analysis of computational models on high performance computers.

This report serves as a reference manual for the commands specification for the DAKOTA software, pro-
viding input overviews, option descriptions, and example specifications.

Contents

1 DAKOTA Reference Manual

L1 Introduction e e
1.2 Input Specification Reference
1.3 Web ResoUrces i e

2 DAKOTA File Documentation

2.1 dakota.input.spec File Reference

3 Commands Introduction
31 OVEIVIEW . . o o
3.2 IDR Input Specification File
3.3 Common Specification Mistakes
3.4 Sampledakota.inFiles

3.5 Tabulardescriptions

4 Strategy Commands
4.1 Strategy Description
4.2 Strategy Specification
4.3 Strategy IndependentControls
4.4 Multilevel Hybrid Optimization Commands
4.5 Surrogate-based Optimization (SBO) Commands
4.6 Optimization Under Uncertainty Commands
47 Branchand Bound Commands
4.8 Multistart Iteration Commands
4.9 Pareto Set Optimization Commands
4.10 Single Method Commands

5 Method Commands
5.1 Method Description

6 CONTENTS

5.2 Method Specification 40
5.3 Method IndependentControls 41
54 DOT Methods o 46
55 NPSOL Method 47
5.6 CONMIN Methods 48
57 OPT++Methods 49
5.8 SGOPT Methods o 51
59 COLINY Methods 61
510 JEGA Methods e 64
5.11 LeastSquares Methods e 69
5.12 Nondeterministic Methods L 72
5.13 Design of Computer Experiments Methods 78
5.14 Parameter Study Methods 79
6 Variables Commands 83
6.1 \Variables Description e e 83
6.2 Variables Specification 85
6.3 \Variables Set Identifier 85
6.4 DesignVariables 86
6.5 Uncertain Variables 87
6.6 State Variables 91
7 Interface Commands 95
7.1 Interface Description e 95
7.2 Interface Specification 96
7.3 Interface Set Identifier 96
7.4 Application Interface 97
7.5 ApproximationlInterface 103
8 Responses Commands 109
8.1 Responses DesCription 109
8.2 Responses Specification. 110
8.3 Responses Set Identifier 111
8.4 ResponseLabels 111
8.5 Function Specification 112
8.6 Gradient Specification 115
8.7 Hessian Specification 117

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

CONTENTS 7

9 References 119

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 1

DAKOTA Reference Manual

Author:
Michael S. Eldred, Anthony A. Giunta, Laura P. Swiler, Steven F. Wojtkiewicz, Jr., William E. Hart,
Jean-Paul Watson, David M. Gay, Shannon L. Brown

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexi-
ble, extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods, uncertainty quantification with sampling, reli-
ability, and stochastic finite element methods, parameter estimation with nonlinear least squares methods,
and sensitivity/main effects analysis with design of experiments and parameter study capabilities. These
capabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a platform for
rapid prototyping of new solution approaches.

The Reference Manual focuses on documentation of the various input commands for the DAKOTA system.
It follows closely the structure of dakota.input.spec, the master input specification. For information on soft-
ware structure, refer to the Devel oper s Manual , and for a tour of DAKOTA features and capabilities,
refer to the Users Manual [Eldred et al., 2004a].

1.2 Input Specification Reference

In the DAKOTA system, the strategy creates and manages iterators and models. A model contains a set
of variables, an interface, and a set of responses, and the iterator operates on the model to map the vari-
ables into responses using the interface. In a DAKOTA input file, the user specifies these components
through strategy, method, variables, interface, and responses keyword specifications. The Reference Man-
ual closely follows this structure, with introductory material followed by detailed documentation of the
strategy, method, variables, interface, and responses keyword specifications:

Commands Introduction

file:../html/index.html

10 DAKOTA Reference Manual

Strategy Commands
Method Commands
Variables Commands
Interface Commands

Responses Commands

1.3 Web Resources

Project web pages are maintained at htt p: / / endo. sandi a. gov/ DAKOTA with software specifics
and documentation pointers provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ sof t war e. ht nl,
and a list of publications provided at ht t p: / / endo. sandi a. gov/ DAKOTA/ r ef er ences. ht n

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

http://endo.sandia.gov/DAKOTA
http://endo.sandia.gov/DAKOTA/software.html
http://endo.sandia.gov/DAKOTA/references.html

Chapter 2

DAKOTA File Documentation

2.1 dakota.input.spec File Reference

File containing the input specification for DAKOTA.

2.1.1 Detailed Description

File containing the input specification for DAKOTA.

This file is used in the generation of parser system files which are compiled into the DAKOTA executable.
Therefore, this file is the definitive source for input syntax, capability options, and associated data inputs.
Refer to Instructions for Modifying DAKOTA'’s Input Specification for information on how to modify
the input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

¢ In the input specification, required individual specifications are enclosed in { } , optional individual
specifications are enclosed in [], required group specifications are enclosed in (), optional group
specifications are enclosed in [], and either-or relationships are denoted by the | symbol. These
symbols only appear in dakota.input.spec; they must not appear in actual user input files.

o Keyword specifications (i.e., st r at egy, met hod, vari abl es,i nt er f ace,andr esponses)
are delimited by newline characters, both in the input specification and in user input files. Therefore,
to continue a keyword specification onto multiple lines, the back-slash character (\) is needed at
the end of a line in order to escape the newline. Continuation onto multiple lines is not required;
however, it is commonly used to enhance readability.

e Each of the five keywords in the input specification begins with a
<KEYWORD = nane>, <FUNCTION = handl er _nanme>
header which names the keyword and provides the binding to the keyword handler within DAKOTA’s

problem description database. In a user input file, only the name of the keyword appears (e.g.,
vari abl es).

12 DAKOTA File Documentation

e Some of the keyword components within the input specification indicate that the user must sup-
ply <I NTEGER>, <REAL>, <STRI NG>, <LI STof ><I NTEGER>, <L| STof ><REAL>, or
<LI STof ><STRI NG> data as part of the specification. In a user input file, the " =" is optional,
the <LI STof > data can be separated by commas or whitespace, and the <STRI NG> data are
enclosed in single quotes (e.g., ' t ext _book’).

e Inuser input files, input is order-independent (except for entries in lists of data), case insensitive, and
white-space insensitive. Although the order of input shown in the Sample dakota.in Files generally
follows the order of options in the input specification, this is not required.

e Inuser inputfiles, specifications may be abbreviated so long as the abbreviation is unique. For exam-
ple, the appl i cat i on specification within the interface keyword could be abbreviated as appl i c,
but should not be abbreviated as app since this would be ambiguous with appr oxi nat i on.

¢ In both the input specification and user input files, comments are preceded by #.

The dakota.input.spec file used in DAKOTA V3.2 is:

DO NOT CHANGE THI' S FI LE UNLESS YOU UNDERSTAND THE COVPLETE UPDATE PROCESS

Any changes made to the input specification require the manual nerging
of code fragnments generated by IDR into the DAKOTA code. |If this nanual
nerging is not performed, then libidr.a and the Dakota src files

(Probl enDescDB. C, keywordtable.C) will be out of synch which will cause
errors that are difficult to track. Please be sure to consult the
docunent ation i n Dakot a/ docs/ SpecChange. dox before you nodify the input
speci fication or otherwi se change the | DR subsystem

HoH H H HHHHHH

<KEYWORD = vari abl es>, <FUNCTI ON = vari abl es_kwhandl er >
[id_variabl es = <STRI NG|
[{continuous_design = <I NTEGER>}
[cdv_initial_point = <LI STof ><REAL>]
[cdv_| ower _bounds <L| STof ><REAL>]
[cdv_upper _bounds <L| STof ><REAL>]
[cdv_descriptors = <LI STof ><STRI N&]]
[{discrete_design = <| NTEGER>}
[ddv_initial _point = <LI STof ><| NTEGER>]
[ddv_I ower _bounds <LI| STof ><I NTEGER>]
[ddv_upper _bounds <LI| STof ><I NTEGER>]
[ddv_descriptors = <Ll STof ><STRI NG|]
[{normal _uncertain = <I NTEGER>}
{nuv_neans = <LI| STof ><REAL>}
{nuv_std_devi ati ons = <LI STof ><REAL>}
[nuv_di st _| ower _bounds = <LI STof ><REAL>]
[nuv_di st _upper _bounds = <LI| STof ><REAL>]
[nuv_descriptors = <LI STof ><STRI N&]]
[{lognormal _uncertain = <I| NTEGER>}
{I nuv_means = <LI STof ><REAL>}
{I'nuv_std_devi ati ons = <LI STof ><REAL>}
| {Inuv_error_factors = <L| STof ><REAL>}
[nuv_di st _I ower _bounds = <LI STof ><REAL>]
[I nuv_di st _upper _bounds = <LI STof ><REAL>]
[I nuv_descriptors = <LI STof ><STRI N&]]
[{uniformuncertain = <I NTEGER>}
{uuv_di st _| ower _bounds = <LI| STof ><REAL>}
{uuv_di st _upper_bounds = <LI| STof ><REAL>}
[uuv_descriptors = <LI STof ><STRI NG|]
[{loguniformuncertain = <l| NTEGER>}
{l'uuv_di st _| ower _bounds = <LI STof ><REAL>}
{l'uuv_di st _upper _bounds = <LI STof ><REAL>}

e e e e e e e e e e e e o e e e e e e e o e e r — — — — —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

13

[luuv_descriptors = <LI STof ><STRI N&]]
[{weibull _uncertain = <|I NTEGER>}

{wuv_al phas = <LI STof ><REAL>}

{wuv_betas = <L| STof ><REAL>}

[wuv_di st _| ower _bounds = <LI STof ><REAL>]

[wuv_di st _upper _bounds = <LI| STof ><REAL>]

[wuv_descriptors = <LI STof ><STRI NG]]

[{histogram uncertain = <l| NTEGER>}
[{huv_num bi n_pairs = <LI| STof ><| NTEGER>}
{huv_bi n_pairs = <LI STof ><REAL>}]
[{huv_num poi nt_pairs = <LI STof ><I NTEGER>}
{huv_poi nt _pairs = <L| STof ><REAL>}]

[huv_descriptors = <LI STof ><STRI NG|]
[uncertain_correlation_matrix = <L| STof ><REAL>]
[{continuous_state = <I NTEGER>}

[csv_initial _state = <LI STof ><REAL>]

[csv_| ower _bounds <L| STof ><REAL>]

[csv_upper _bounds <L| STof ><REAL>]

[csv_descriptors = <LI STof ><STRI N&]]

[{discrete_state = <I NTEGER>}

[dsv_initial _state = <LI STof ><| NTEGER>]

[dsv_I ower _bounds <LI| STof ><I NTEGER>]

[dsv_upper _bounds <LI STof ><I NTEGER>]

[dsv_descriptors = <Ll STof ><STRI NG|]

<KEYWORD = interface> <FUNCTION = interface_kwhandl er>

[id_interface = <STRI NG|
({application}
{anal ysi s_drivers = <LI STof ><STRI NG>}
[input _filter = <STRI NG|
[output _filter = <STRI NG|
({systent
[paraneters_file = <STRI NG|
[results_file = <STRI NG|
[anal ysi s_usage = <STRI NG|
[aprepro] [file_tag] [file_save])

({fork}
[paraneters_file = <STRI NG|
[results_file = <STRI NG]
[aprepro] [file_tag] [file_save])

({direct}
[processors_per_anal ysi s <| NTEGER>]
[processors_per_anal ysi s <LI STof ><I NTEGER>]
[nodel center _file = <STRING])

({grid}
{host names = <LI| STof ><STRI NG>}
[processors_per_host = <LI STof ><I NTEGER>])
[{asynchronous} [eval uation_concurrency = <I NTEGER>]
[anal ysi s_concurrency = <I NTEGER>]]
[eval uati on_servers = <| NTEGER>]
[eval uati on_sel f _schedul i ng]
[eval uati on_static_schedul i ng]
[anal ysi s_servers = <I NTEGER>]
[anal ysi s_sel f _schedul i ng]
[anal ysi s_static_schedul i ng]
[{failure_capture} {abort} | {retry = <INTEGER>} |
{recover = <LI| STof ><REAL>} | {continuation}]
[{deactivate} [active_set_vector] [eval uation_cache]
[restart_file]])
|
({approxi mation}
({global}

i i g

o o o o o e e o e e —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

14 DAKOTA File Documentation

{neural _network} | {mars} | {hermte} | \

({polynom al} {linear} | {quadratic} | {cubic}) | \

({kriging} [correlations = <LI STof ><REAL>]) \

[dace_net hod_poi nter = <STRI NG| \

[{reuse_sanples} {all} | {region} | \

{samples_file = <STRI NG}] \

[{correction} \

{additive} | {multiplicative} | {conbined} \

{zeroth_order} | {first_order} | {second_order}] \

[{rebuild} {inactive_all} | {inactive_region}] \
[use_gradients]) \

| \

({rmultipoint} \

{tana?} [use_gradients?] [correction?] \
{actual _interface_pointer = <STRING}) \

| \

({local} \

{tayl or_seri es} \

{actual _interface_pointer = <STRI NG} \

[actual _interface_responses_pointer = <STRING]) \

| \

({hierarchical} \

{low fidelity_interface_poi nter = <STRI NG} \
{high_fidelity_interface_pointer = <STRI NG} \

{high_fidelity_interface_responses_poi nter = <STRI NG}\
{interface_pointer_hierarchy = <LI STof ><STRI NG>} \
({correction} \

{additive} | {multiplicative} | {conbined} \

{zeroth_order} | {first_order} | {second_order})))

<KEYWORD = responses>, <FUNCTION = responses_kwhandl er > \
[id_responses = <STRI NG| \
[response_descriptors = <LI STof ><STRI NG| \
({num_objective_functions = <| NTEGER>} \
[mul ti_objective_weights = <LI STof ><REAL>] \

[{num_nonlinear_inequality_constraints = <l NTEGER>} \
[nonlinear_inequality_| ower_bounds = <L| STof ><REAL>] \
[nonl i near _i nequal i ty_upper _bounds = <L| STof ><REAL>]] \

[{num_nonlinear_equality_constraints = <| NTEGER>} \
[nonlinear_equality_ targets = <Ll STof ><REAL>]]) \

| \
({num_| east _squares_terns = <| NTEGER>} \
[{num_nonlinear_inequality_constraints = <I NTEGER>} \
[nonlinear_inequality_|l ower_bounds = <LI| STof ><REAL>] \
[nonlinear_i nequal i ty_upper_bounds = <LI| STof ><REAL>]] \

[{num_nonlinear_equality_constraints = <| NTEGER>} \
[nonlinear_equality_ targets = <LI STof ><REAL>]]) \

| \
{num response_functi ons = <| NTEGER>} \
{no_gradi ent s} \
| \
({nunerical _gradients} \
[{method_source} {dakota} | {vendor}] \

[{interval _type} {forward} | {central}] \
[fd_step_size = <LI STof ><REAL>]) \

| \
{anal yti c_gradi ent s} \
| \
({m xed_gr adi ent s} \
{id_nunerical = <LI STof ><| NTEGER>} \

[{rethod_source} {dakota} | {vendor}] \

[{interval _type} {forward} | {central}] \
[fd_step_size = <LI STof ><REAL>] \

{id_anal ytic = <LI STof ><I NTEGER>}) \
{no_hessi ans} \

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

{anal yti c_hessi ans}

<KEYWORD = strategy> <FUNCTION = strategy_kwhandl er >
[graphi cs]
[{tabul ar_graphics_data} [tabul ar_graphics_file = <STRING]]
[iterator_servers = <I NTEGER>]
[iterator_sel f_scheduling] [iterator_static_scheduling]
({rmulti_level}
({uncoupl ed}
[{adaptive} {progress_threshold = <REAL>}]
{nmethod_I| i st = <LI STof ><STRI NG})
I
({coupl ed}
{gl obal _nmet hod_poi nter = <STRI NG}
{l ocal _nmet hod_poi nter = <STRI NG}
[l ocal _search_probability = <REAL>]))
|
({surrogate_based_opt}
{opt _nmet hod_poi nter = <STRI NG}
[max_iterations = <I NTEGER>]
[conver gence_t ol erance = <REAL>]
[soft _convergence_limt = <I NTEGER>]
[truth_surrogat e_bypass]
[{trust_region}
[initial_size = <REAL>]
[m ni num si ze = <REAL>]
[contract _region_threshold = <REAL>]
[expand_regi on_t hreshol d = <REAL>]
[contraction_factor = <REAL>]
[expansi on_factor = <REAL>]])
I
({opt_under _uncertainty}
{opt _nmet hod_poi nter = <STRI NG})
I
({branch_and_bound}
{opt _nmet hod_poi nter = <STRI NG}
[num sanpl es_at _r oot <| NTEGER>]
[num sanpl es_at _node = <I NTEGER>])

({rmulti_start}
{nmet hod_poi nter = <STRI NG}
[{random starts <I NTEGER>} [seed = <INTEGER>]]
[starting_points <LI| STof ><REAL>])

I
({pareto_set}
{opt _nmet hod_poi nter = <STRI NG}
[{random wei ght _sets = <I NTEGER>} [seed = <I| NTEGER>]]
[mul ti _objective_weight_sets = <LI| STof ><REAL>])
|
({singl e_nethod}
[met hod_poi nter = <STRING>])

<KEYWORD = et hod>, <FUNCTI ON = net hod_kwhandl er >
[id_met hod = <STRI NG|
[{nodel _type}
[vari abl es_poi nt er= <STRI NG|
[responses_poi nter = <STRI NG|
({single} [interface_pointer = <STRING])
| ({nested} {sub_nethod_pointer = <STRI NG}

[{interface_pointer = <STRI NG}
{interface_responses_poi nter = <STRI NG}]
[primary_mapping_nmatrix = <LI STof ><REAL>]
[secondary_nappi ng_matri x = <LI STof ><REAL>])

| ({layered} {interface_pointer = <STRING})]

o e o e —

L

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

16

DAKOTA File Documentation

[specul ati ve]

[

{out put} {debug} | {verbose} | {quiet} | {silent}]

[max_iterations = <I NTEGER>]
[max_function_eval uations = <l NTEGER>]
[constraint_tol erance = <REAL>]

[convergence_t ol erance = <REAL>]
[l'inear_inequality_constraint_matrix

[l'inear _i nequal ity_| ower _bounds = <L| STof ><REAL>]
[linear_inequality_upper_bounds = <LI STof ><REAL>]

[linear_equality_constraint_matrix =

[linear_equality_ targets = <Ll STof ><REAL>]

(

I
(

—— o~ —

{dot _frcg}

[{optim zation_type} {minimze} | {maximze}])

{dot _rmf d}

[{optim zation_type} {mnimze} | {maximze}])

{dot _bf gs}

[{optim zation_type} {mnimze} | {maximze}])

{dot _sl p}

[{optim zation_type} {minimze} | {maximze}])

{dot _sqp}

[{optim zation_type} {mnimze} | {maximze}])

{conmi n_frcg})
{conmi n_nfd})
{npsol _sqp}

[verify_level = <INTEGER>]
[function_precision = <REAL>]

[linesearch_tol erance = <REAL>])

{nl ssol _sqp}
[verify_level = <INTEGER>]
[function_precision = <REAL>]
[li nesearch_tol erance = <REAL>])
{nl 2so0l }
[afctol = <REAL>] [auxprt =
[covreq = <INTEGER>] [deltal =
[dl tfdc = <REAL>] [function
[1max0 = <REAL>] [l maxs =
[outlev = <INTEGER>] [rdreq =
[rfctol = <REAL>] [sctol =
[xctol = <REAL>] [xftol =

{reduced_sqp})

{optpp_cg}

[max_step = <REAL>] [gradient_tol erance = <REAL>])

{opt pp_q_new on}

[{search_nethod} {val ue_based_line_search} |
{gradi ent _based_l i ne_search} | {trust_region} |

{tr_pds}]

[max_step = <REAL>] [gradient_tol erance =
[merit_function = <STRING>] [central _path = <STRI NG>]
[stepl engt h_to_boundary = <REAL>]
[centering_paranmeter = <REAL>])

{opt pp_f d_new on}

[{search_rmethod} {val ue_based_line_search} |

<

<L| STof ><REAL>]

LI STof ><REAL>]

<| NTEGER>]
<REAL>]
_precision = <REAL>]
<REAL>]
<| NTEGER>]
<REAL>]
<REAL>])

<REAL>]

o o o o e o e o e e e e e e o o e e e e e o e o e o o e o e o o o e o - — —

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

17

{gradi ent _based_line_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING>] [central _path = <STRI NG|
[stepl engt h_to_boundary = <REAL>]
[centering_paraneter = <REAL>])

({optpp_g_new on}
[{search_method} {val ue_based_line_search} |
{gradi ent _based_line_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING] [central _path = <STRI NG]
[stepl ength_to_boundary = <REAL>]
[centering_paraneter = <REAL>])

({opt pp_newt on}
[{search_nethod} {val ue_based_|ine_search} |
{gradi ent _based_l i ne_search} | {trust_region} |
{tr_pds}]
[max_step = <REAL>] [gradient_tol erance = <REAL>]
[merit_function = <STRING] [central _path = <STRI NG]
[stepl ength_to_boundary = <REAL>]
[centering_paranmeter = <REAL>])

({opt pp_pds}
[search_schene_si ze = <I NTEGER>])

({coliny_apps}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[sol ution_accuracy = <REAL>]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[contraction_factor = <REAL>])

({coliny_cobyl a}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_direct}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI N&])

({coliny_pga_real}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_nulti_start}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG>])

({coliny_pattern_search}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[solution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[{stochastic} [seed = <INTEGER>]]
{initial _delta = <REAL>} {threshold_delta = <REAL>}
[{pattern_basis} {coordinate} | {sinplex}]
[total _pattern_size = <I NTEGER>]
[no_expansi on] [expand_after_success = <| NTEGER>]
[contraction_factor = <REAL>]
[{exploratory_noves} {multi_step} |

{adaptive_pattern} | {basic_pattern}])

({coliny_solis_wets}

P L S S L R L L L R S L L L L L L L)

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

18 DAKOTA File Documentation

[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI NG|
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I NTEGER>]
{initial _delta = <REAL>} {threshold_delta = <REAL>}
[no_expansi on] [expand_after_success = <| NTEGER>]
[contract_after_failure = <I NTEGER>]
[contraction_factor = <REAL>])
I
({coliny_m sc_solver}
[show_mi sc_opti ons]
[m sc_options = <LI STof ><STRI N&])
I
({sgopt_pga_real}
[sol ution_accuracy = <REAL>] [max_cpu_time = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{repl acenent _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new_sol uti ons_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {blend} | {uniforn}
[crossover_rate = <REAL>]]
[{rmutation_type} {replace_uniforn} |

({offset_normal} [mutation_scale = <REAL>]) |
({of fset_cauchy} [mutation_scal e = <REAL>]) |
({offset_uniforn} [mutation_scal e = <REAL>]) |

({offset_triangular} [nutation_scale = <REAL>])
[di nension_rate = <REAL>] [popul ation_rate = <REAL>]
[non_adaptive]])
I
({sgopt_pga_int}
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{replacerment _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new _sol utions_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {unifornt}
[crossover _rate = <REAL>]]
[{nutation_type} {replace_uniforn} |
({offset_uniform [rutation_range = <I NTEGER>])
[di mension_rate = <REAL>]
[popul ation_rate = <REAL>]])
I
({sgopt_epsa}
[sol ution_accuracy = <REAL>] [max_cpu_tinme = <REAL>]
[seed = <I NTEGER>] [popul ation_size = <| NTEGER>]
[{selection_pressure} {rank} | {proportional}]
[{repl acenent _type} {random = <| NTEGER>} |
{chc = <INTEGER>} | {elitist = <I NTEGER>}
[new_sol uti ons_generated = <I NTEGER>]]
[{crossover_type} {two_point} | {uniform
[crossover_rate = <REAL>]]
[{rmutation_type} {unary_coord} | {unary_sinplex} |
({rmulti_coord} [dimension_rate = <REAL>]) |
({multi_sinplex} [dinmension_rate = <REAL>])
[mut ation_scal e = <REAL>] [mi n_scal e = <REAL>]
[popul ation_rate = <REAL>]]
[num partitions = <I NTECER>])
|
({sgopt_pattern_search}
[solution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[{stochastic} [seed = <I NTEGER>]]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[{pattern_basis} {coordinate} | {sinplex}]

o o o o o e o o o e o e e

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

[total _pattern_size = <I NTEGER>]
[no_expansi on] [expand_after_success = <| NTEGER>]
[contraction_factor = <REAL>]
[{exploratory_noves} {rmulti_step} | {best_all} |
{best _first} | {biased_best_first} |
{adaptive_pattern} | {test}])
|
({sgopt_solis_wets}
[sol ution_accuracy = <REAL>] [nmax_cpu_time = <REAL>]
[seed = <I| NTEGER>]
{initial _delta = <REAL>} {threshol d_delta = <REAL>}
[no_expansi on] [expand_after_success = <| NTEGER>]
[contract_after_failure = <I NTEGER>]
[contraction_factor = <REAL>])
|
({sgopt_strat_nt}
[sol ution_accuracy = <REAL>] [max_cpu_tinme = <REAL>]
[seed = <I NTEGER>] [batch_size = <| NTEGER>]
[partitions = <LI STof ><I NTEGER>])
|
({noga}
[seed = <I NTEGER>]
[{initialization_type} {randont | {unique_randon} |
{flat_file = <STRI NG}
[popul ation_size = <I NTEGER>]]
[{crossover_type} {rmulti_point_binary = <I NTEGER>} |
{mul ti _poi nt _paraneterized_bi nary = <| NTEGER>} |
{mul ti _poi nt_real = <|NTEGER>} |
({shuffle_randon} [num parents = <| NTEGER>]
[num of fspring = <I NTEGER>])
[crossover_rate = <REAL>]]
[{rmutation_type} {bit_randon} | {replace_uniforn} |

({offset_normal} [nutation_scale = <REAL>]) |
({offset_cauchy} [nutation_scale = <REAL>]) |
({offset_uniform [nutation_scale = <REAL>])

[popul ation_rate = <REAL>]]
[{selection_type} {roulette_wheel} |
{uni que_roul ette_wheel } |
({dom nation_count} [domi nation_cutoff = <I NTEGER>]
[shrinkage_percentage = <REAL>])])
I
({soga}
[seed = <I| NTEGER>]
[{initialization_type} {randont | {unique_randon} |
{flat_file = <STRI NG}
[popul ation_size = <I NTEGER>]]
[{crossover_type} {rmulti_point_binary = <I NTEGER>} |
{mul ti _poi nt _paraneterized_bi nary = <| NTEGER>} |
{mul ti _point_real = <|NTEGER>} |
({shuffle_randon} [num parents = <| NTEGER>]
[num of fspring = <I NTEGER>])
[crossover_rate = <REAL>]]
[{rmutation_type} {bit_randon} | {replace_uniforn} |

({offset_normal} [nutation_scale = <REAL>]) |
({offset_cauchy} [nutation_scale = <REAL>]) |
({offset_uniforn} [nutation_scale = <REAL>])

[popul ation_rate = <REAL>]]
[{selection_type} {favor_feasible} |
({roul ette_wheel}
[exterior_penalty_nultiplier = <REAL>]) |
(" {uni que_roul ette_wheel}
[exterior_penalty multiplier = <REAL>])]
[{convergence_type}
({best_fitness_tracker} [percent_change = <REAL>]
[num generations = <INTEGER>]) |

P L L L L L L L L L L L R L R L L)

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

20

DAKOTA File Documentation

({average_fitness_tracker} [percent_change = <REAL>]
[num generations = <INTEGER>])])
I
({nond_pol ynomi al _chaos}
{expansi on_terms = <| NTEGER>}
{expansi on_order = <| NTEGER>}
[seed = <I NTEGER>] [fixed_seed] [sanples = <| NTEGER>]
[{sanple_type} {randonm} | {lhs}]
[{distribution} {cunulative} | {conplenmentary}]
[{response_l evel s = <LI STof ><REAL>}
[num response_l evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_levels = <LI STof ><REAL>}
[num probability_ |l evel s = <LI STof ><I NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_|evels = <LI STof ><I NTEGER>]])
|
({nond_sanpl i ng}
[seed = <INTEGER>] [fixed_seed] [sanples = <| NTEGER>]
[{sanple_type} {randon}t | {lhs}] [all _variables]
[{distribution} {cunulative} | {conplenmentary}]
[{response_l evel s = <LI STof ><REAL>}
[num response_l evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_|levels = <LI STof ><REAL>}
[num probability_l evel s = <LI STof ><| NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_|evels = <LI STof ><I NTEGER>]])
|
({nond_reliability}
[{rmpp_search} {x_linearize_nean} | {x_linearize_npp}
{u_linearize_nean} | {u_linearize_npp}
{no_linearize} [sqgp] [nip]]
[{integration} {first_order} | {second_order}]
[{distribution} {cunulative} | {conplenmentary}]
[{response_| evel s = <LI STof ><REAL>}
[num response_| evel s = <LI STof ><| NTEGER>]
[{conpute} {probabilities} | {reliabilities}]]
[{probability_levels = <LI STof ><REAL>}
[num probability_l evel s = <LI STof ><| NTEGER>]]
[{reliability_levels = <LI STof ><REAL>}
[numreliability_levels = <LI STof ><I NTEGER>]])
I
({dace}
{grid} | {random} | {oas} | {lhs} | {oa_l hs}
{box_behnken} | {central _conposite}
[seed = <I NTEGER>] [fi xed_seed]
[sanpl es = <I NTEGER>] [synbols = <I NTEGER>])
|
({vector_paraneter_study}
({final _point = <LI STof ><REAL>}
{step_length = <REAL>} | {num steps = <INTEGER>})
I
({step_vector = <LI STof ><REAL>}
{num steps = <INTEGER>}))
|
({list_paraneter_study}
{list_of _points = <LI STof ><REAL>})
|

({centered_paraneter_study}
{percent_delta = <REAL>}
{del tas_per_variabl e = <I NTEGER>})
I
({mul tidi mparaneter_study}
{partitions = <L| STof ><| NTEGER>})

o e o o o e o o e o e

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

2.1 dakota.input.spec File Reference

21

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

22

DAKOTA File Documentation

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 3

Commands I ntroduction

3.1 Overview

In the DAKOTA system, a strategy governs how each method maps variables into responses through the
use of an interface. Each of these five pieces (strategy, method, variables, responses, and interface) are
separate specifications in the user’s input file, and as a whole, determine the study to be performed during
an execution of the DAKOTA software. The number of strategies which can be invoked during a DAKOTA
execution is limited to one. This strategy, however, may invoke multiple methods. Furthermore, each
method may (in general) have its own "model," consisting of its own set of variables, its own interface, and
its own set of responses. Thus, there may be multiple specifications of the method, variables, interface, and
responses sections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing system
[Weatherby et al., 1996], which uses the dakota.input.spec file to describe the allowable inputs to the sys-
tem. This input specification file, then, provides a quick reference to the allowable system inputs from
which a particular input file (e.g., dakot a. i n) can be derived.

This Reference Manual focuses on providing complete details for the allowable specifications in an in-
put file to the DAKOTA program. Related details on the name and location of the DAKOTA program,
command line inputs, and execution syntax are provided in the Users Manual [Eldred et al., 2004a].

3.2 IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file (dakota.input.spec) is used by a
code generator to create parsing system components which are compiled into the DAKOTA executable (re-
fer to Instructions for Modifying DAKOTA’s Input Specification for additional information). Therefore,
dakota.input.spec is the definitive source for input syntax, capability options, and optional and required ca-
pability sub-parameters. Beginning users may find this file more confusing than helpful and, in this case,
adaptation of example input files to a particular problem may be a more effective approach. However,
advanced users can master all of the various input specification possibilities once the structure of the input
specification file is understood.

Refer to the dakota.input.spec documentation for a listing of the current version and discussion of speci-
fication features. From this file listing, it can be seen that the main structure of the variables keyword is
that of ten optional group specifications for continuous design, discrete design, normal uncertain, lognor-

24 Commands Introduction

mal uncertain, uniform uncertain, loguniform uncertain, weibull uncertain, histogram uncertain, continu-
ous state, and discrete state variables. Each of these specifications can either appear or not appear as a
group. Next, the interface keyword requires the selection of either an application OR an approximation
interface. The type of application interface must be specified with either a system OR fork OR direct
OR grid required group specification, or the type of approximation interface must be specified with ei-
ther a global OR multipoint OR local OR hierarchical required group specification. Within the responses
keyword, the primary structure is the required specification of the function set (either optimization func-
tions OR least squares functions OR generic response functions), followed by the required specification
of the gradients (either none OR numerical OR analytic OR mixed) and the required specification of the
Hessians (either none OR analytic). The strategy specification requires either a multi-level OR surrogate-
based optimization OR optimization under uncertainty OR branch and bound OR multi-start OR pareto
set OR single method strategy specification. Lastly, the method keyword is the most lengthy specifica-
tion; however, its structure is relatively simple. The structure is simply that of a set of optional method-
independent settings followed by a long list of possible methods appearing as required group specifications
(containing a variety of method-dependent settings) separated by OR’s. Refer to Strategy Commands,
Method Commands, Variables Commands, Interface Commands, and Responses Commands for detailed
information on the keywords and their various optional and required specifications. And for additional
details on IDR specification logic and rules, refer to [Weatherby et al., 1996].

3.3 Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious errors include:

e Documentation of new capability sometimes lags the use of new capability in executables (especially
experimental executables from nightly builds). When parsing errors occur which the documentation
cannot explain, reference to the particular input specification used in building the executable (which
is installed alongside the executable) will often resolve the errors.

¢ Since keywords are terminated with the newline character, care must be taken to avoid following the
backslash character with any white space since the newline character will not be properly escaped,
resulting in parsing errors due to the truncation of the keyword specification.

e Care must be taken to include newline escapes when embedding comments within a keyword spec-
ification. That is, newline characters will signal the end of a keyword specification even if they are
part of a comment line. For example, the following specification will be truncated because one of
the embedded comments neglects to escape the newline:

No error here: new ine need not be escaped since coment is not enbedded

responses, \
No error here: newine is escaped \
num obj ective_functions =1 \
Error here: this coment nust escape the new ine
anal ytic_gradients \

no_hessi ans

In most cases, the IDR system provides helpful error messages which will help the user isolate the source
of the parsing problem.

3.4 Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in the dakota.input.spec specification file which
describe the problem to be solved by the DAKOTA system. Several examples follow.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

3.4 Sample dakota.in Files 25

34.1 Samplel: Optimization

The following sample input file shows single-method optimization of the Textbook Example using
DOT’s modified method of feasible directions. A similar file is available in the test directory as
Dakot a/ t est / dakot a_t ext book.in.

strategy,\
si ngl e_net hod

met hod, \

dot _mmfd \
max_iterations = 50 \
convergence_tol erance = le-4 \
out put verbose

vari abl es, \

continuous_design = 2\
cdv_initial_point 0.9
cdv_upper _bounds 5.8
cdv_| ower _bounds 0.5
cdv_descri ptor ' x1

interface,\

application system\
anal ysis_driver = 'text_book’\
paraneters_file = ’'text_book.in"\
results file = 'text_book. out’\
file_tag fil e_save

responses, \

num obj ective_functions = 1\

num nonl i near _inequality_constraints = 2\
anal ytic_gradients \

no_hessi ans

3.4.2 Sample?2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock Ex-
ample using OPT++’s Gauss-Newton method. A similar file is available in the test directory as
Dakot a/ t est/ dakot a_r osenbr ock.in.

strategy, \
si ngl e_net hod

nmet hod, \
opt pp_g_hewt on \
max_iterations = 50 \
convergence_tol erance = le-4

vari abl es, \
continuous_design = 2\
cdv_initial_point -1.2 1.0\

cdv_| ower _bounds -2.0 -2.0\

cdv_upper _bounds 2.0 2.0\

cdv_descri ptor T x1’ ' x2
interface,\

application system\

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

26 Commands Introduction

anal ysis_driver = 'rosenbrock’

responses, \
num | east _squares_terms = 2 \

anal ytic_gradients \

no_hessi ans

3.4.3 Sample 3: Nondeter ministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Exam-
ple. A similar file is available in the test directory as Dakot a/ t est / dakot a_t ext book_| hs.in.

strategy,\
si ngl e_met hod graphi cs

net hod, \
nond_sanpling \
sanpl es = 100 seed = 12345 \
sanpl e_type | hs \
response_| evel s = 3. 6e+11 6.e+04 3.5e+05

vari abl es, \

normal _uncertain = 2\
nuv_neans
nuv_std_devi ati ons
nuv_descri ptor

uni formuncertain = 2\
uuv_di st _| ower _bounds
uuv_di st _upper _bounds

248.89, 593.33\
12. 4, 29.7 \
" TF1n’ " TF2n"\

199.3, 474.63\
298.5, 712. \

uuv_descri pt or = 'TF1u’ " TR2u' \
wei bul | _uncertain = 2\

wuv_al phas = 12., 30. \

wuv_bet as = 250., 590. \

wuv_descri ptor " TF1wW " TF2w

interface,\
appl i cati on system asynch eval uati on_concurrency = 5 \
anal ysis_driver = 'text_book’

responses, \

num response_functions = 3 \
no_gradi ents \

no_hessi ans

3.4.4 Sample4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example. A similar
file is available in the test directory as Dakot a/ t est / dakot a_pst udy.in.

net hod, \
vect or _par anet er _study \
step_vector = .1 .1 .1\

numsteps = 4

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

3.4 Sample dakota.in Files 27

vari abl es, \
conti nuous_design = 3\

cdv_initial _point 1.0 1.0 1.0

interface,\

appl i cati on system asynchronous \
anal ysis_driver = 'text_book’

responses, \

num obj ective_functions = 1\

num nonl i near _inequality_constraints = 2\
anal ytic_gradients \

anal yti c_hessi ans

345 Sampleb5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three methods. It employs a
genetic algorithm, pattern search, and full Newton gradient-based optimization in succession to solve
the Textbook Example. A similar file is available in the test directory as Dakot a/ t est / dakot a_-
mul til evel .in.

strategy,\

graphics \

multi _| evel uncoupled \
method_list =" GA 'CPS ' NLP

met hod, \
id_method = 'GA'\
nmodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_pointer = 'RL’\

sgopt _pga_real \
popul ati on_size = 10 \
out put verbose

met hod, \
id_nmethod = 'PS'\
nmodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_pointer = 'RL’\

sgopt _pattern_search stochastic \
out put verbose \
initial _delta = 0.1\
threshold_delta = 1.e-4\
sol ution_accuracy = 1.e-10 \
expl oratory_noves best_first

met hod, \
id_nmethod = 'NLP'\
nodel _type single \

vari abl es_pointer = 'V1'\
interface_pointer = "11'\
responses_poi nter = 'R2’\

opt pp_newt on \
gradi ent _tolerance = 1.e-12 \
convergence_tol erance = 1.e-15

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

28 Commands Introduction

vari abl es, \

id_variables = "V1'\

conti nuous_design = 2 \
cdv_initial_point 0.6
cdv_upper _bounds 5.8
cdv_| ower _bounds 0.5
cdv_descri ptor T x1

.

S o

N © © ~
_

interface,\
id_interface = "11'\
application direct,\

anal ysis_driver = 'text_book’

responses, \
id_responses = 'R1'\
num obj ecti ve_functions
no_gradients \
no_hessi ans

1\

responses, \

id_responses = 'R2'\

num obj ective_functions = 1\
anal ytic_gradients \

anal yti c_hessi ans

Additional example input files, as well as the corresponding output and graphics, are provided in the Getting
Started chapter of the Users Manual [Eldred et al., 2004a].

3.5 Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Tables 4.1 through 8.7) are used
to present a short description of the specification, the keyword used in the specification, the type of data
associated with the keyword, the status of the specification (required, optional, required group, or optional
group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur when speci-
fications are nested within multiple groupings. For example, in an interface keyword, the par anet ers_-
fi | e specification is an optional specification within the syst emand f or k required group specifica-
tions, which are separated from each other and from other required group specifications (di r ect and
gri d) by logical OR’s. The selection between the syst em f or k, di rect, or gri d required groups
is contained within another required group specification (appl i cat i on), which is separated from the
appr oxi mat i on required group specification by a logical OR. Rather than unnecessarily proliferate the
number of tables in attempting to capture all of these inter-relationships, a balance is sought, since some
inter-relationships are more easily discussed in the associated text. The general structure of the following
sections is to present the outermost specification groups first (e.g., appl i cat i on in Tables 7.2 and 7.3),
followed by lower levels of specifications (e.g., syst emf or k, di rect, orgri d in Tables 7.4 through
7.7) in succession.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 4

Strategy Commands

4.1 Strategy Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern the man-
agement of iterators and models in the solution of the problem of interest. Seven strategies currently exist:
mul ti _| evel, surrogate_based_opt, opt _under _uncertainty, branch_and_bound,
mul ti _start, pareto_set, and si ngl e_net hod. These algorithms are implemented within the
Strategy "Strategy" class hierarchy in the MultilevelOptStrategy, SurrBasedOptStrategy, NonDOpt-
Strategy, BranchBndStrategy, ConcurrentStrategy, and SingleMethodStrategy classes. For each of
the strategies, a brief algorithm description is given below. Additional information on the algorithm logic
is available in the Users Manual [Eldred et al., 2004a].

In a multi-level hybrid optimization strategy (mul ti _| evel), a list of methods is specified which will
be used synergistically in seeking an optimal design. The goal here is to exploit the strengths of different
optimization algorithms through different stages of the optimization process. Global/local hybrids (e.g.,
genetic algorithms combined with nonlinear programming) are a common example in which the desire for
identification of a global optimum is balanced with the need for efficient navigation to a local optimum.

In surrogate-based optimization (sur r ogat e_based_opt), optimization occurs using an approxima-
tion model, i.e., a surrogate model, that is built and periodically updated using data from a "truth" model.
The surrogate model can be a global data fit (e.g., a smoothing polynomial or an interpolation function
built from a design of computer experiments database), a multipoint approximation, a local Taylor Series
expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model typically is a high-fidelity simulation model. A trust region strategy is used to manage the optimiza-
tion process to maintain acceptable accuracy between the surrogate model and the truth model (by limiting
the range over which the surrogate model is trusted). The process involves a sequence of optimization
runs performed on the surrogate model and bounded by the trust region. At the end of each optimization
run, the candidate optimum point found by the optimizer is evaluated using both the surrogate model and
the truth model. If sufficient decrease has been obtained in the truth model, the trust region is re-centered
around the candidate optimum point and the trust region will either shrink, expand, or remain the same
size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region
shrinks by a user-specified factor. The cycle then repeats with the construction of a new surrogate model,
an optimization run, and another test for sufficient decrease in the truth model. This cycle continues until
convergence is attained. The goals of surrogate-based optimization are to reduce the total number of truth
model simulations and, in the case of surface fit surrogate models, to smooth noisy data with an easily

30 Strategy Commands

navigated analytic function.

In optimization under uncertainty (opt _under _uncert ai nty), a nondeterministic method is used to
evaluate the effect of uncertain variables, modeled using probabilistic distributions, on responses of interest.
Statistics on these responses are then included in the objective and constraint functions of the optimization
problem (for example, to minimize probability of failure). The nondeterministic method may be nested
directly within the optimization function evaluations, or the expense of direct nesting can be mitigated
through the use of surrogates (using the sub-model recursion features of NestedModel, SurrLayered-
Model, and HierLayeredModel to combine surrogates with nested iteration). Commaon optimization under
uncertainty choices include surrogate-based optimization under uncertainty (which nests sampling-based
uncertainty quantification within surrogate-based optimization) and reliability-based design optimization
(which nests reliability analysis within gradient-based optimization).

In the branch and bound strategy (br anch_and_bound), mixed integer nonlinear programs (nonlinear
applications with a mixture of continuous and discrete variables) can be solved through the combination of
the PICO parallel branching algorithm with the nonlinear programming algorithms available in DAKOTA.
Since PICO supports parallel branch and bound techniques, multiple bounding operations can be per-
formed concurrently for different branches, which provides for concurrency in nonlinear optimizations
for DAKOTA. This is an additional level of parallelism, beyond those available for a single optimization
(concurrent evaluations within an optimizer, concurrent analyses within an evaluation, and multiprocessor
analyses). Branch and bound is applicable when the discrete variables can assume continuous values dur-
ing the solution process (i.e., the integrality conditions are relaxable). It proceeds by performing a series of
continuous-valued optimizations for different variable bounds which, in the end, drive the discrete variables
to integer values.

In the multi-start iteration strategy (nul ti _st art), a series of iterator runs are performed for different
values of parameters in the model. A common use is for multi-start optimization (i.e., different local
optimization runs from different starting points for the design variables), but the concept and the code are
more general. An important feature is that these iterator runs may be performed concurrently, similar to
the branch and bound strategy discussed above.

In the pareto set optimization strategy (par et o_set), a series of optimization runs are performed for
different weightings applied to multiple objective functions. This set of optimal solutions defines a "Pareto
set," which is useful for investigating design trade-offs between competing objectives. Again, these op-
timizations can be performed concurrently, similar to the branch and bound and multi-start strategies
discussed above. The code is similar enough to the mul ti _st art technique that both strategies are
implemented in the same ConcurrentStrategy class.

Lastly, the si ngl e_net hod strategy is a "fall through" strategy in that it does not provide control over
multiple iterators or multiple models. Rather, it provides the means for simple execution of a single iterator
on a single model.

Each of the strategy specifications identifies one or more method pointers (e.g., met hod_1I i st, opt _-
nmet hod_poi nt er) to identify the iterators that will be used in the strategy. These method pointers
are strings that correspond to the i d_net hod identifier strings from the method specifications (see
Method Independent Controls). These string identifiers (e.g., "NLP1") should not be confused with method
selections (e.g., dot _mmf d). Each of the method specifications identified in this manner has the responsi-
bility for identifying the variables, interface, and responses specifications (using var i abl es_poi nt er,
i nterface_pointer,andresponses_poi nt er from Method Independent Controls) that are used
to build the model used by the iterator. If a method specification does not provide a particular pointer, then
that component of the model will be built using the last specification parsed. In addition to method point-
ers, a variety of graphics options (e.g., t abul ar _gr aphi cs_dat a), iterator concurrency controls (e.g.,
i terator_servers),and strategy data (e.g., st arti ng_poi nt s) can be specified.

Specification of a strategy block in an input file is optional, with si ngl e_net hod being the default
strategy. If no strategy is specified or if si ngl e_net hod is specified without its optional met hod_ -
poi nt er specification, then the default behavior is to employ the last method, variables, interface, and

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.1 Strategy Description 31

responses specifications parsed. This default behavior is most appropriate if only one specification is
present for method, variables, interface, and responses, since there is no ambiguity in this case.

Example specifications for each of the strategies follow. Anul ti _| evel exampleis:

strategy, \
mul ti _| evel uncoupl ed \
nethod_list = 'GAl', 'CPS1l', ' NLPY

Asurrogat e _based_opt example specification is:

strategy, \
graphi cs \
surrogat e_based_opt \
opt _net hod_poi nter = ' NLP1’ \
trust_region initial_size = 0.10

Anopt _under _uncert ai nt y example specification is:

strategy, \
opt _under _uncertainty \
opt _net hod_poi nter = ' NLP1’

A branch_and_bound example specification is:

strategy, \
iterator_servers = 4 \
branch_and_bound \

opt _nmet hod_poi nter = ' NLPLl’

Anul ti _start example specification is:

strategy, \

mul ti_start \
met hod_poi nter = ' NLPL’ \
random starts = 10

A par et o_set example specification is:

strategy, \
pareto_set \
opt _net hod_poi nter = ' NLPI’ \
random wei ght _sets = 10

And finally, a si ngl e_mnet hod example specification is:

strategy, \
singl e_nmet hod \
nmet hod_poi nter = ' NLP1’

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

32 Strategy Commands

4.2 Strategy Specification

The strategy specification has the following structure:

strategy, \
<strategy i ndependent control s>\
<strategy sel ection>\

<strategy dependent control s>

where <strat egy sel ecti on> is one of the following: nul ti _| evel ,surrogate_based_-
opt, opt_under _uncertainty, branch_and_bound, nmulti_start, pareto_set, or
si ngl e_net hod.

The <strategy i ndependent control s> are those controls which are valid for a variety of
strategies. Unlike the Method Independent Controls, which can be abstractions with slightly different
implementations from one method to the next, the implementations of each of the strategy independent
controls are consistent for all strategies that use them. The <strat egy dependent control s>
are those controls which are only meaningful for a specific strategy. Referring to dakota.input.spec, the
strategy independent controls are those controls defined externally from and prior to the strategy selection
blocks. They are all optional. The strategy selection blocks are all required group specifications separated
by logical OR’s (mul ti _| evel ORsurrogat e _based_opt ORopt _under _uncertai ntyOR
branch_and_bound ORmulti _start OR pareto_set OR si ngl e_mnet hod). Thus, one and
only one strategy selection must be provided. The strategy dependent controls are those controls defined
within the strategy selection blocks. Defaults for strategy independent and strategy dependent controls
are defined in DataStrategy. The following sections provide additional detail on the strategy independent
controls followed by the strategy selections and their corresponding strategy dependent controls.

4.3 Strategy Independent Controls

The strategy independent controls include gr aphi cs, t abul ar _graphi cs_dat a, t abul ar _-
graphics file, iterator_servers, iterator_self _scheduling, and iterator_-
stati c_schedul i ng. The gr aphi cs flag activates a 2D graphics window containing history plots
for the variables and response functions in the study. This window is updated in an event loop with
approximately a 2 second cycle time. For applications utilizing approximations over 2 variables, a 3D
graphics window containing a surface plot of the approximation will also be activated. The t abul ar _-
gr aphi cs_dat a flag activates file tabulation of the same variables and response function history data
that gets passed to graphics windows with use of the gr aphi cs flag. Thet abul ar _graphics_file
specification optionally specifies a name to use for this file (dakot a_t abul ar. dat is the default).
Within the file, the variables and response functions appear as columns and each function evaluation pro-
vides a new table row. This capability is most useful for post-processing of DAKOTA results with 3rd
party graphics tools such as MATLAB, Tecplot, etc. There is no dependence between the gr aphi cs
flag and the t abul ar _gr aphi cs_dat a flag; they may be used independently or concurrently. The
iterator_servers,iterator_self_scheduling,anditerator_static_scheduling
specifications provide manual overrides for the number of concurrent iterator partitions and the schedul-
ing policy for concurrent iterator jobs. These settings are normally determined automatically in the
parallel configuration routines (see ParallelLibrary) but can be overridden with user inputs if desired.
The gr aphi cs, tabul ar _gr aphi cs_dat a, and t abul ar _graphi cs_fi | e specifications are
valid for all strategies. However, the i t erat or _servers,iterator_sel f_schedul i ng, and
i terator_static_schedul i ngoverrides are only useful inputs for those strategies supporting con-
currency in iterators, i.e., branch_and_bound, mul ti _start,and pareto_set (opt _under -
uncert ai nt'y will support this in the future once full NestedModel parallelism support is in place).
Table 4.1 summarizes the strategy independent controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.4 Multilevel Hybrid Optimization Commands 33

Description Keyword Associated Data | Status Default
Graphics flag graphi cs none Optional no graphics
Tabulation of tabul ar _- none Optional group no data tabulation
graphics data graphi cs_-
dat a
File name for tabul ar_- string Optional dakot a_-
tabular graphics graphi cs_- t abul ar . dat
data file
Number of iterator_- integer Optional no override of
iterator servers servers auto configure
Self-scheduling iterator - none Optional no override of
of iterator jobs sel f_- auto configure
schedul i ng
Static scheduling | iterator_- none Optional no override of
of iterator jobs static_- auto configure
schedul i ng

Table 4.1: Specification detail for strategy independent controls

4.4 Multilevel Hybrid Optimization Commands

The multi-level hybrid optimization strategy has uncoupl ed, uncoupl ed adapti ve, and coupl ed
approaches (see the Users Manual for more information on the algorithms employed). In the two uncoupled
approaches, a list of method strings supplied with the met hod_I1 i st specification specifies the identity
and sequence of iterators to be used. Any number of iterators may be specified. The uncoupled adaptive
approach may be specified by turning on the adapt i ve flag. If this flag in specified, then pr ogr ess_ -
t hr eshol d must also be specified since it is a required part of adaptive specification. In the nonadaptive
case, method switching is managed through the separate convergence controls of each method. In the
adaptive case, however, method switching occurs when the internal progress metric (normalized between
0.0 and 1.0) falls below the user specified pr ogr ess_t hr eshol d. Table 4.2 summarizes the uncoupled
multi-level strategy inputs.

Description Keyword Associated Data | Status Default

Multi-level multi _|evel none Required group N/A

hybrid strategy (1 of 7 selections)

Uncoupled uncoupl ed none Required group N/A

hybrid (1 of 2 selections)

Adaptive flag uncoupl ed none Optional group nonadaptive
hybrid

Adaptive progress_- real Required N/A

progress t hr eshol d

threshold

List of methods met hod_| i st list of strings Required N/A

Table 4.2: Specification detail for uncoupled multi-level strategies

In the coupl ed approach, global and local method strings supplied with the gl obal _net hod_-
poi nter and | ocal _nmet hod_poi nt er specifications identify the two methods to be used. The
| ocal _search_probabi |l ity setting is an optional specification for supplying the probability (be-
tween 0.0 and 1.0) of employing local search to improve estimates within the global search. Table 4.3
summarizes the coupled multi-level strategy inputs.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

34 Strategy Commands
Description Keyword Associated Data | Status Default
Multi-level multi _|evel none Required group N/A
hybrid strategy (1 of 7 selections)

Coupled hybrid coupl ed none Required group N/A
(1 of 2 selections)

Pointer to the gl obal _- string Required N/A

global method nmet hod_-

specification poi nt er

Pointer to the | ocal _- string Required N/A

local method nmet hod_-

specification poi nt er

Probability of | ocal _- real Optional 0.1

executing local search_-

searches probability

Table 4.3: Specification detail for coupled multi-level strategies

4.5 Surrogate-based Optimization (SBO) Commands

The surrogat e_based_opt strategy must specify an optimization method using opt _rret hod_ -
poi nt er. The method specification identified by opt _net hod_poi nt er is responsible for selecting
al ayer ed model for use as the surrogate (see Method Independent Controls). Algorithm controls include
max_it erati ons (the maximum number of SBO cycles allowed), conver gence_t ol er ance (the
relative tolerance used in internal SBO convergence assessments), sof t _conver gence_|l i m t (asoft
convergence control for the SBO iterations which limits the number of consecutive iterations with im-
provement less than the convergence tolerance), and t r ut h_sur r ogat e_bypass (a flag for bypassing
all lower level surrogates when performing truth verifications on a top level surrogate). In addition, the
trust _regi on optional group specification can be used to specify the initial size of the trust region
(using i ni tial _si ze) relative to the total variable bounds, the minimum size of the trust region (us-
ing m ni mum_si ze), the contraction factor for the trust region size (using cont racti on_f act or)
used when the surrogate model is performing poorly, and the expansion factor for the trust region size
(using expansi on_f act or) used when the the surrogate model is performing well. Two additional
commands are the trust region size contraction threshold (using cont r act _r egi on_t hr eshol d)and
the trust region size expansion threshold (using expand_r egi on_t hr eshol d). These two commands
are related to what is called the trust region ratio, which is the actual decrease in the truth model divided
by the predicted decrease in the truth model in the current trust region. The command contract _-
regi on_t hr eshol d sets the minimum acceptable value for the trust region ratio, i.e., values below this
threshold cause the trust region to shrink for the next SBO iteration. The command expand_r egi on_-
t hr eshol d determines the trust region value above which the trust region will expand for the next SBO
iteration. Tables 4.4 and 4.5 summarize the surrogate based optimization strategy inputs.

4.6 Optimization Under Uncertainty Commands

The opt _under _uncert ai nt y strategy must specify an optimization iterator using opt _net hod_ -
poi nt er. In the case of a direct nesting of an uncertainty quantification iterator within the top level

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.7 Branch and Bound Commands 35

Description Keyword Associated Data | Status Default
Surrogate-based surrogate_- none Required group N/A
optimization based_opt (1 of 7 selections)

strategy

Optimization opt _nethod - | string Required N/A
method pointer poi nt er

Maximum max_- integer Optional 100
number of SBO iterations

iterations

Convergence real Optional le-4
tolerance for convergence_-

SBO iterations tol erance

Soft convergence | soft _- integer Optional 5

limit for SBO conver gence_-

iterations limt

Flag for truth_- none Optional no bypass
bypassing lower surrogate_-

level surrogates bypass

in truth

verifications

Table 4.4: Specification detail for surrogate based optimization strategies

model, the method specification identified by opt _net hod_poi nt er would select a nest ed model
(see Method Independent Controls). In the case of surrogate-based optimization under uncertainty, the
method specification identified by opt _net hod_poi nt er might select either a nest ed model or a
| ayer ed model, since the recursive properties of NestedModel, SurrLayeredModel, and HierLayered-
Model could be utilized to configure any of the following:

e "layered containing nested" (i.e., optimization of a data fit surrogate built using statistical data from
nondeterministic analyses)

e "nested containing layered" (i.e., optimization using nondeterministic analysis data evaluated from a
data fit or hierarchical surrogate)

e "layered containing nested containing layered" (i.e., combination of the two above: optimization of
a data fit surrogate built using statistical data from nondeterministic analyses, where the nondeter-
ministic analyses are performed on a data fit or hierarchical surrogate)

Since most of the sophistication is encapsulated within the nested and layered model classes (see
nested/layered specifications in Method Independent Controls), the optimization under uncertainty strat-
egy inputs are minimal. Table 4.6 summarizes these inputs.

4.7 Branch and Bound Commands

The branch_and_bound strategy must specify an optimization method using opt _rnet hod_-
poi nt er. This optimization method is responsible for computing optimal solutions to nonlinear pro-
grams which arise from different branches of the mixed variable problem. These branches correspond to
different bounds on the discrete variables where the integrality constraints on these variables have been
relaxed. Solutions which are completely feasible with respect to the integrality constraints provide an up-
per bound on the final solution and can be used to prune branches which are not yet integer-feasible and

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

36 Strategy Commands
Description Keyword Associated Data | Status Default
Trust region trust_regi on | none Optional group N/A
group
specification
Trust region initial _size | real Optional 0.4
initial size
(relative to
bounds)

Trust region m ni mum si ze | real Optional l.e-6
minimum size
Shrink trust contract _- real Optional 0.25
region if trust regi on_-
region ratio is t hreshol d
below this value
Expand trust expand_- real Optional 0.75
region if trust regi on_-
region ratio is t hreshol d
above this value
Trust region real Optional 0.25
contraction factor | contraction_-

factor
Trust region expansi on_- real Optional 2.0
expansion factor factor

Table 4.5: Specification detail for trust region controls in surrogate based optimization strategies

Description Keyword Associated Data | Status Default
Optimization opt _under _- none Required group N/A
under uncertainty | uncertainty (1 of 7 selections)

strategy

Optimization opt _nethod_- | string Required N/A
method pointer poi nt er

Table 4.6: Specification detail for optimization under uncertainty strategies

which have higher objective functions. The optional num sanpl es_at root and num sanpl es_-
at _node specifications specify the number of additional function evaluations to perform at the root of
the branching structure and at each node of the branching structure, respectively. These samples are se-
lected randomly within the current variable bounds of the branch. This feature is a simple way to globalize
the optimization of the branches, since nonlinear problems may be multimodal. Table 4.7 summarizes the
branch and bound strategy inputs.

4.8 Multistart Iteration Commands

Therul ti _start strategy must specify an iterator using met hod_poi nt er . This iterator is responsi-
ble for completing a series of iterative analyses from a set of different starting points. These starting points
can be specified as follows: (1) using r andom st ar t s, for which the specified number of starting points
are selected randomly within the variable bounds, (2) using st arti ng_poi nt s, in which the starting
values are provided in a list, or (3) using bothr andom st art sandst arti ng_poi nt s, for which the
combined set of points will be used. In aggregate, at least one starting point must be specified. The most

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

4.9 Pareto Set Optimization Commands

37

Description Keyword Associated Data | Status Default
Branch and branch_and_- | none Required group N/A
bound strategy bound (1 of 7 selections)
Optimization opt _nethod_- | string Required N/A
method pointer poi nt er

Number of num - integer Optional 0
samples at the sanpl es_at _-

branching root r oot

Number of num - integer Optional 0
samples at each sanpl es_at _-

branching node node

Table 4.7: Specification detail for branch and bound strategies

common example of a multi-start strategy is multi-start optimization, in which a series of optimizations
are performed from different starting values for the design variables. This can be an effective approach for

problems with multiple minima. Table 4.8 summarizes the multi-start strategy inputs.

Description Keyword Associated Data | Status Default
Multi-start multi _start none Required group N/A
iteration strategy (1 of 7 selections)
Method pointer nmet hod_- string Required N/A

poi nt er
Number of random - integer Optional group no random
random starting starts starting points
points
Seed for random seed integer Optional system-generated
starting points seed
List of starting - list of reals Optional no user-specified
user-specified poi nts starting points
starting points

4.9 Pareto Set Optimization Commands

Table 4.8: Specification detail for multi-start strategies

The par et 0_set strategy must specify an optimization method using opt _ret hod_poi nt er . This
optimizer is responsible for computing a set of optimal solutions from a set of multiobjective weightings.
These weightings can be specified as follows: (1) using r andom wei ght _set s, in which case weight-
ings are selected randomly within [0,1] bounds, (2) using mul ti _obj ecti ve_wei ght _sets, in
which the weighting sets are specified in a list, or (3) using both r andom wei ght _setsandnul ti _-
obj ecti ve_wei ght _set s, for which the combined set of weights will be used. In aggregate, at least
one set of weights must be specified. The set of optimal solutions is called the "pareto set," which can
provide valuable design trade-off information when there are competing objectives. Table 4.9 summarizes
the pareto set strategy inputs.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

38 Strategy Commands
Description Keyword Associated Data | Status Default
Pareto set pareto_set none Required group N/A
optimization (1 of 7 selections)
strategy
Optimization opt _nethod - | string Required N/A
method pointer poi nt er
Number of random - integer Optional no random
random wei ght _sets weighting sets
weighting sets
Seed for random | seed integer Optional system-generated
weighting sets seed
List of mul ti_- list of reals Optional no user-specified
user-specified obj ective_- weighting sets

weighting sets

wei ght _sets

Table 4.9: Specification detail for pareto set strategies

4.10 Single Method Commands

The single method strategy is the default if no strategy specification is included in a user input file. It
may also be specified using the si ngl e_net hod keyword within a strategy specification. An optional
nmet hod_poi nt er specification may be used to point to a particular method specification. If net hod_ -
poi nt er is not used, then the last method specification parsed will be used as the iterator. Table 4.10
summarizes the single method strategy inputs.

Description Keyword Associated Data | Status Default |
Single method single_- string Required group N/A
strategy nmet hod (1 of 7 selections)
Method pointer met hod_- string Optional use of last
poi nt er method parsed ‘

Table 4.10: Specification detail for single method strategies

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

Chapter 5

Method Commands

5.1 Method Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The terms
"method" and "iterator" can be used interchangeably, although method often refers to an input specification
whereas iterator usually refers to an object within the Iterator hierarchy. A method specification, then,
is used to select an iterator from the iterator hierarchy, which includes optimization, uncertainty quantifi-
cation, least squares, design of experiments, and parameter study iterators (see Users Manual for more
information on these iterator branches). This iterator may be used alone or in combination with other it-
erators as dictated by the strategy specification (refer to Strategy Commands for strategy command syntax
and to the Users Manual for strategy algorithm descriptions).

Several examples follow. The first example shows a minimal specification for an optimization method.

met hod, \
dot _sqp

This example uses all of the defaults for this method.

A more sophisticated example would be

net hod, \
id_method = ' NLP1'\
nmodel _type single \
vari abl es_poi nt er
interface_pointer
responses_poi nt er
dot _sqgp \
max_iterations = 50 \
convergence_tol erance = le-4 \
out put verbose \
optim zati on_type mnimze

mn o n
Ars

This example demonstrates the use of identifiers and pointers (see Method Independent Controls) as
well as some method independent and method dependent controls for the sequential quadratic program-
ming (SQP) algorithm from the DOT library. The max_i t er ati ons, conver gence_t ol er ance,

40 Method Commands

and out put settings are method independent controls, in that they are defined for a variety of meth-
ods (see DOT method independent controls for DOT usage of these controls). The opti mi zati on_-
t ype control is a method dependent control, in that it is only meaningful for DOT methods (see
DOT method dependent controls).

The next example shows a specification for a least squares method.

nmet hod, \

opt pp_g_newt on \
max_iterations = 10 \
convergence_tol erance = 1.e-8 \
search_net hod trust_region \
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with a new set of method dependent con-
trols (sear ch_net hod and gr adi ent _t ol er ance) which are only meaningful for OPT++ methods
(see OPT++ method dependent controls).

The next example shows a specification for a nondeterministic iterator with several method dependent
controls (refer to Nondeterministic sampling method).

net hod, \

nond_sanpling \
sanpl es = 100 seed = 12345\
sanpl e_type | hs \
response_| evel s = 1000. 500

The last example shows a specification for a parameter study iterator where, again, each of the controls are
method dependent (refer to Vector parameter study).

net hod, \

vect or _paraneter _study \
step_vector = 1. 1. 1.\
num steps = 10

5.2 Method Specification

As alluded to in the examples above, the method specification has the following structure:

net hod, \
<net hod i ndependent control s>\
<met hod sel ecti on>\

<met hod dependent control s>

where <nethod sel ection> is one of the following: dot_frcg, dot_mmfd, dot_-
bfgs, dot_slp, dot_sqgp, conmn_frcg, conm n_nfd, npsol _sqgp, nlssol_sqp,
nl 2sol, reduced_sqgp, opt pp_cg, optpp_q_newt on, opt pp_fd_newt on, optpp_g -
newt on, opt pp_new on, opt pp_pds, col i ny_apps, col i ny_cobyl a, coliny_direct,
coliny _pga_real,coliny multi_start,coliny_pattern_search,coliny_solis_-
wets, and coliny_msc_solver, sgopt_pga real, sgopt _pga_int, sgopt_epsa,
sgopt _pattern_search, sgopt_solis_wets, sgopt_strat_nt, nond_pol ynom al _-
chaos, nond_sanpl i ng,nond _reliability,dace,vector paranmeter_study,list -
par armet er _st udy, cent ered_par amet er _study,ornul ti di m paranet er _st udy.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 41

The <met hod i ndependent contr ol s> are those controls which are valid for a variety of meth-
ods. In some cases, these controls are abstractions which may have slightly different implementations
from one method to the next. The <met hod dependent contr ol s> are those controls which are
only meaningful for a specific method or library. Referring to dakota.input.spec, the method independent
controls are those controls defined externally from and prior to the method selection blocks. They are all
optional. The method selection blocks are all required group specifications separated by logical OR’s. The
method dependent controls are those controls defined within the method selection blocks. Defaults for
method independent and method dependent controls are defined in DataMethod. The following sections
provide additional detail on the method independent controls followed by the method selections and their
corresponding method dependent controls.

5.3 Method Independent Controls

The method independent controls include a method identifier string, a model type specification with point-
ers to variables, interface, and responses specifications, a speculative gradient selection, an output verbosity
control, maximum iteration and function evaluation limits, constraint and convergence tolerance specifica-
tions, and a set of linear inequality and equality constraint specifications. While each of these controls is
not valid for every method, the controls are valid for enough methods that it was reasonable to pull them
out of the method dependent blocks and consolidate the specifications.

The method identifier string is supplied with i d_ret hod and is used to provide a unique identifier string
for use with strategy specifications (refer to Strategy Description). It is appropriate to omit a method iden-
tifier string if only one method is included in the input file and si ngl e_net hod is the selected strategy
(all other strategies require one or more method pointers), since the single method to use is unambiguous
in this case.

The type of model to be used by the method is supplied with nodel _t ype and can be si ngl e, nest ed,
or | ayer ed (refer to Model for the class hierarchy involved). In the si ngl e model case, the optional
vari abl es_pointer,interface_pointer,andresponses_poi nt er specifications provide
strings for cross-referencing withi d_vari abl es,id_interface,andi d_r esponses string in-
puts from particular variables, interface, and responses keyword specifications. These pointers identify
which specifications will be used in building the single model, which is to be iterated by the method to map
the variables into responses through the interface. In the | ayer ed model case, the specification is similar,
except that the i nt er f ace_poi nt er specification is required in order to identify a global, multipoint,
local, or hierarchical approximation interface (see Approximation Interface) to use in the layered model. In
the nest ed model case, a sub_met hod_poi nt er must be provided in order to specify the nested iter-
ator,andi nt erface_poi nter andi nt erface_responses_poi nt er provide an optional group
specification for the optional interface portion of nested models (where i nt er f ace_poi nt er points to
the interface specification and i nt er f ace_r esponses_poi nt er points to a responses specification
describing the data to be returned by this interface). This interface is used to provide non-nested data,
which is then combined with data from the nested iterator using the pri mary_mappi ng_nat ri x and
secondary_mappi ng_rmat ri x inputs (refer to NestedModel::response_mapping() for additional in-
formation). In all cases, if a pointer string is specified and no corresponding id is available, DAKOTA will
exit with an error message. If no pointer string is specified, the last specification parsed will be used. It
is appropriate to omit this cross-referencing whenever the relationships are unambiguous due to the pres-
ence of only one specification. Since the method specification is responsible for cross-referencing with
the interface, variables, and responses specifications, identification of methods at the strategy layer is often
sufficient to completely specify all of the object interrelationships.

Tables 5.1 and 5.2 provides the specification detail for the method independent controls involving identi-
fiers, pointers, and model type controls.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

42

Method Commands

Description Keyword Associated Data | Status Default
Method set i d_net hod string Optional strategy use of
identifier last method
parsed
Model type nodel _type singl e | Optional group single
nested |
| ayered
Variables set vari abl es_- string Optional method use of
pointer poi nt er last variables
parsed
Interface set interface._- string singl e: singl e:
pointer poi nt er Optional, method use of
nest ed: last interface
Optional group, parsed,
| ayered: nested: no
Required optional
interface,
| ayered: N/A
Responses set responses._- string Optional method use of
pointer poi nt er last responses
parsed

Table 5.1: Specification detail for the method independent controls: identifiers, pointers, and model types

When performing gradient-based optimization in parallel, specul at i ve gradients can be selected to
address the load imbalance that can occur between gradient evaluation and line search phases. In a typical
gradient-based optimization, the line search phase consists primarily of evaluating the objective function
and any constraints at a trial point, and then testing the trial point for a sufficient decrease in the objective
function value and/or constraint violation. If a sufficient decrease is not observed, then one or more addi-
tional trial points may be attempted sequentially. However, if the trial point is accepted then the line search
phase is complete and the gradient evaluation phase begins. By speculating that the gradient information
associated with a given line search trial point will be used later, additional coarse grained parallelism can
be introduced by computing the gradient information (either by finite difference or analytically) in parallel,
at the same time as the line search phase trial-point function values. This balances the total amount of com-
putation to be performed at each design point and allows for efficient utilization of multiple processors.
While the total amount of work performed will generally increase (since some speculative gradients will
not be used when a trial point is rejected in the line search phase), the run time will usually decrease (since
gradient evaluations needed at the start of each new optimization cycle were already performed in parallel
during the line search phase). Refer to [Byrd et al., 1998] for additional details. The speculative specifi-
cation is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries, and
it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to Gradient Specification for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this pur-
pose. In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not
support speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota
numerical or analytic gradients) is a superior approach for load-balanced parallel execution.

Output verbosity control is specified with out put followed by si | ent, qui et , ver bose or debug.
If there is no user specification for output verbosity, then the default setting is nor mal . This gives a total
of five output levels to manage the volume of data that is returned to the user during the course of a study,
ranging from full run annotation plus internal debug diagnostics (debug) to the bare minimum of output
containing little more than the total number of simulations performed and the final solution (si | ent).
Output verbosity is observed within the Iterator (algorithm verbosity), Model (synchronize/fd_gradients

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 43
Description Keyword Associated Data | Status Default
Sub-method sub_net hod_- | string Required N/A
pointer for nested | poi nt er
models
Responses interface_- string Required within N/A
pointer for nested | r esponses_- optional group
model optional poi nt er
interfaces
Primary mapping | primary_- list of reals Optional no sub-iterator
matrix for nested | nmappi ng_- contribution to
models mat ri X primary functions
Secondary secondary_- list of reals Optional no sub-iterator
mapping matrix mappi ng_- contribution to
for nested models | matri x secondary

functions

Table 5.2: Specification detail for the method independent controls: nested models

verbosity), Interface (map/synch verbosity), Approximation (global data fit coefficient reporting),and
AnalysisCode (file operation reporting) class hierarchies; however, not all of these software components
observe the full granularity of verbosity settings. Specific mappings are as follows:

e out put sil ent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approxima-
tion, quiet file operations

e out put qui et : quiet iterators, quiet model, quiet interface, quiet approximation, quiet file oper-
ations

e out put normal ;: normal iterators, normal model, normal interface, quiet approximation, quiet
file operations

e out put verbose: verbose iterators, normal model, verbose interface, verbose approximation,
verbose file operations

e out put debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose
approximation, verbose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations,
and file operations do not. With respect to iterator verbosity, different iterators implement this control in
slightly different ways (as described below in the method independent controls descriptions for each it-
erator), however the meaning is consistent. For models, interfaces, approximations, and file operations,
qui et suppresses parameter and response set reporting and si | ent further suppresses function evalua-
tion headers and scheduling output. Similarly, ver bose adds file management, approximation evaluation,
and global approximation coefficient details, and debug further adds diagnostics from nonblocking sched-
ulers.

The constrai nt _t ol er ance specification determines the maximum allowable value of infeasibility
that any constraint in an optimization problem may possess and still be considered to be satisfied. It is spec-
ified as a positive real value. If a constraint function is greater than this value then it is considered to be vi-
olated by the optimization algorithm. This specification gives some control over how tightly the constraints
will be satisfied at convergence of the algorithm. However, if the value is set too small the algorithm may
terminate with one or more constraints being violated. This specification is currently meaningful for the
NPSOL, NLSSOL, DOT and CONMIN constrained optimizers (refer to DOT method independent controls
and NPSOL method independent controls).

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

44 Method Commands

The conver gence_t ol er ance specification provides a real value for controlling the termination
of iteration. In most cases, it is a relative convergence tolerance for the objective function; i.e., if
the change in the objective function between successive iterations divided by the previous objective
function is less than the amount specified by convergence_tolerance, then this convergence criterion
is satisfied on the current iteration. Since no progress may be made on one iteration followed by
significant progress on a subsequent iteration, some libraries require that the convergence tolerance
be satisfied on two or more consecutive iterations prior to termination of iteration. This control is
used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OPT++, and
SGOPT) and is not used within the uncertainty quantification, design of experiments, or parameter study
iterator branches. Refer to DOT method independent controls, NPSOL method independent controls,
OPT++ method independent controls, and SGOPT method independent controls for specific interpreta-
tions of the conver gence_t ol er ance specification.

The max_iterati ons and max_functi on_eval uati ons controls provide integer limits for the
maximum number of iterations and maximum number of function evaluations, respectively. The difference
between an iteration and a function evaluation is that a function evaluation involves a single parameter
to response mapping through an interface, whereas an iteration involves a complete cycle of computation
within the iterator. Thus, an iteration generally involves multiple function evaluations (e.g., an iteration
contains descent direction and line search computations in gradient-based optimization, population and
multiple offset evaluations in nongradient-based optimization, etc.). This control is not currently used
within the uncertainty quantification, design of experiments, and parameter study iterator branches, and
in the case of optimization and least squares, does not currently capture function evaluations that occur
as part of the met hod_sour ce dakot a finite difference routine (since these additional evaluations are
intentionally isolated from the iterators).

Table 5.3 provides the specification detail for the method independent controls involving tolerances, limits,
output verbosity, and speculative gradients.

Description Keyword Associated Data | Status Default
Speculative specul ative none Optional no speculation
gradients and
Hessians
Output verbosity | out put silent | Optional nor nal
qui et |
ver bose |
debug
Maximum max_- integer Optional 100
iterations iterations
Maximum max_- integer Optional 1000
function function_-
evaluations eval uati ons
Constraint constraint_- | real Optional Library default
tolerance tol erance
Convergence real Optional l.e-4
tolerance convergence_-
tol erance

Table 5.3: Specification detail for the method independent controls: tolerances, limits, output verbosity,
and speculative gradients

Linear inequality constraints can be supplied withthel i near _i nequal ity _constraint_matri X,
linear _inequality | ower_bounds,andlinear_inequality_ upper_ bounds specifica-
tions, and linear equality constraints can be supplied with the | i near _equal i ty_constrai nt _-

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.3 Method Independent Controls 45

matrix and | i near _equal i ty_t ar get s specifications. In the inequality case, the constraint ma-
trix provides coefficients for the variables and the lower and upper bounds provide constraint limits for the
following two-sided formulation;

a; < Az < ay

As with nonlinear inequality constraints (see Objective and constraint functions (optimization data set)),
the default linear inequality constraint bounds are selected so that one-sided inequalities of the form

Az <0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous
DAKOTA versions). In a user bounds specification, any upper bound values greater than +bi gReal -
BoundSi ze (1.e+30, as defined in OptLeastSq) are treated as +infinity and any lower bound values less
than - bi gReal BoundSi ze are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since - DBL_MAX
< - bi gReal BoundSi ze). In the equality case, the constraint matrix again provides coefficients for the
variables and the targets provide the equality constraint right hand sides:

Ar = a
and the defaults for the equality constraint targets enforce a value of 0. for each constraint

Az =0.0

Currently, DOT, CONMIN, NPSOL, NLSSOL, and OPT++ all support specialized handling of linear con-
straints (either directly through the algorithm itself or indirectly through the DAKOTA wrapper). SGOPT
optimizers will support linear constraints in future releases. Linear constraints need not be computed by
the user’s interface on every function evaluation; rather the coefficients, bounds, and targets of the linear
constraints can be provided at start up, allowing the optimizers to track the linear constraints internally. It
is important to recognize that linear constraints are those constraints that are linear in the design variables,
e.g.
0.0 < 3z1 — 429 + 223 < 15.0
1+ 22+ 23 > 2.0
1 +x9 —23=1.0

which is not to be confused with something like
s(X) — Sfait < 0.0

where the constraint is linear in a response quantity, but may be a nonlinear implicit function of the design
variables. For the three linear constraints above, the specification would appear as:

linear_inequality_constraint_matrix = 3.0 -4.0 2.0 \

1.0 1.0 1.0 \
l'i near _i nequal ity_| ower_bounds = 0.0 2.0 \
|'i near _i nequal i ty_upper_bounds = 15.0 1.e+50 \
linear_equality_constraint_matrix = 1.0 1.0 -1.0 \
linear_equality targets = 1.0 \

where the 1.e+50 is a dummy upper bound value which defines a 1-sided inequality since it is greater
than bi gReal BoundSi ze. The constraint matrix specifications list the coefficients of the first constraint
followed by the coefficients of the second constraint, and so on. They are divided into individual constraints
based on the number of design variables, and can be broken onto multiple lines for readability as shown
above.

Table 5.4 provides the specification detail for the method independent controls involving linear constraints.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

46 Method Commands

Description Keyword Associated Data | Status Default
Linear inequality | | i near - list of reals Optional no linear
coefficient matrix | i nequality_- inequality
constraint_- constraints
mat ri X
Linear inequality | | i near - list of reals Optional vector values =
lower bounds i nequality_- - DBL_MAX
| ower bounds
Linear inequality | | i near - list of reals Optional vector values = 0.
upper bounds inequal ity -
upper _bounds
Linear equality linear - list of reals Optional no linear equality
coefficient matrix | equal ity_- constraints
constraint_-
mat ri x
Linear equality linear - list of reals Optional vector values = 0.
targets equality -
targets

Table 5.4: Specification detail for the method independent controls: linear inequality and equality con-
straints

5.4 DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear programming op-
timizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s dot _bf gs method) and
Fletcher-Reeves conjugate gradient (DAKOTA’s dot _f r cg method) methods for unconstrained optimiza-
tion, and the modified method of feasible directions (DAKOTA’s dot _nmmf d method), sequential linear
programming (DAKOTA’s dot _s| p method), and sequential quadratic programming (DAKOTA’s dot _ -
sqp method) methods for constrained optimization. DAKOTA provides access to the DOT library through
the DOTOptimizer class.

54.1 DOT method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed duringa DOT
optimization. The conver gence_t ol er ance control defines the threshold value on relative change
in the objective function that indicates convergence. This convergence criterion must be satisfied for two
consecutive iterations before DOT will terminate. The const rai nt _t ol er ance specification defines
how tightly constraint functions are to be satisfied at convergence. The default value for DOT constrained
optimizers is 0.003. Extremely small values for constraint_tolerance may not be attainable. The output
verbosity specification controls the amount of information generated by DOT: the si | ent and qui et set-
tings result in header information, final results, and objective function, constraint, and parameter informa-
tion on each iteration; whereas the ver bose and debug settings add additional information on gradients,
search direction, one-dimensional search results, and parameter scaling factors. DOT contains no parallel
algorithms which can directly take advantage of concurrent evaluations. However, if nuneri cal _-
gr adi ent s with met hod_sour ce dakot a is specified, then the finite difference function evaluations
can be performed concurrently (using any of the parallel modes described in the Users Manual). In ad-
dition, if specul ati ve is specified, then gradients (dakot a nunmeri cal or anal yti c gradients)
will be computed on each line search evaluation in order to balance the load and lower the total run time
in parallel optimization studies. Lastly, specialized handling of linear constraints is supported with DOT;
linear constraint coefficients, bounds, and targets can be provided to DOT at start-up and tracked internally.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.5 NPSOL Method 47

Specification detail for these method independent controls is provided in Tables 5.1 through 5.4.

5.4.2 DOT method dependent controls

DOT’s only method dependent control is opti mi zati on_t ype which may be either i ni i ze or
maxi m ze. DOT provides the only set of methods within DAKOTA which support this control; to convert
a maximization problem into the minimization formulation assumed by other methods, simply change the
sign on the objective function (i.e., multiply by -1). Table 5.5 provides the specification detail for the DOT
methods and their method dependent controls.

Description Keyword Associated Data | Status Default
Optimization m nimze| Optional group mnimze
type optim zation_|- maxi m ze

type

Table 5.5: Specification detail for the DOT methods

5.5 NPSOL Method

The NPSOL library [Gill et al., 1986] contains a sequential quadratic programming (SQP) implementation
(the npsol _sqp method). SQP is a nonlinear programming optimizer for constrained minimization.
DAKOTA provides access to the NPSOL library through the NPSOLOptimizer class.

5.5.1 NPSOL method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major SQP iterations and the number of function evaluations that can be performed during
an NPSOL optimization. The conver gence_t ol er ance control defines NPSOL’s internal optimal-
ity tolerance which is used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a
minimum. The magnitude of conver gence_t ol er ance approximately specifies the number of signif-
icant digits of accuracy desired in the final objective function (e.g., conver gence_t ol erance=1.e-6
will result in approximately six digits of accuracy in the final objective function). The constrai nt _-
t ol er ance control defines how tightly the constraint functions are satisfied at convergence. The default
value is dependent upon the machine precision of the platform in use, but is typically on the order of 1.e-8
for double precision computations. Extremely small values for const r ai nt _t ol er ance may not be
attainable. The out put verbosity setting controls the amount of information generated at each major SQP
iteration: the si | ent and qui et settings result in only one line of diagnostic output for each major iter-
ation and print the final optimization solution, whereas the ver bose and debug settings add additional
information on the objective function, constraints, and variables at each major iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. However,
if nuneri cal _gradi ent s with met hod_sour ce dakot a is specified, then the finite difference
function evaluations can be performed concurrently (using any of the parallel modes described in the Users
Manual). An important related observation is the fact that NPSOL uses two different line searches depend-
ing on how gradients are computed. For either anal yti c_gr adi ent s or nuneri cal _gradi ents
with met hod_sour ce dakot a, NPSOL is placed in user-supplied gradient mode (NPSOL’s "Derivative
Level" is set to 3) and it uses a gradient-based line search (the assumption is that user-supplied gradients
are inexpensive). On the other hand, if nuneri cal _gr adi ent s are selected with met hod_sour ce
vendor , then NPSOL is computing finite differences internally and it will use a value-based line search

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

48 Method Commands

(the assumption is that finite differencing on each line search evaluation is too expensive). The ramifica-
tions of this are: (1) performance will vary between et hod_sour ce dakot a and net hod_sour ce
vendor for nuneri cal _gradi ents, and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode is already load
balanced for parallel execution. Therefore, a specul at i ve specification will be ignored by NPSOL,
and optimization with numerical gradients should select met hod_sour ce dakot a for load balanced
parallel operation and met hod_sour ce vendor for efficient serial operation.

Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying
the coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear
equality constraints, this information can be provided to NPSOL at initialization and tracked internally,
removing the need for the user to provide the values of the linear constraints on every function evaluation.
Refer to Method Independent Controls for additional information and to Tables 5.1 through 5.4 for method
independent control specification detail.

5.5.2 NPSOL method dependent controls

NPSOL’s method dependent controls are verify_ level, function_precision, and
i nesearch_tol erance. The verify_level control instructs NPSOL to perform finite
difference verifications on user-supplied gradient components. The f uncti on_pr eci si on control
provides NPSOL an estimate of the accuracy to which the problem functions can be computed. This is
used to prevent NPSOL from trying to distinguish between function values that differ by less than the
inherent error in the calculation. And the | i nesear ch_t ol er ance setting controls the accuracy of
the line search. The smaller the value (between 0 and 1), the more accurately NPSOL will attempt to
compute a precise minimum along the search direction. Table 5.6 provides the specification detail for the
NPSOL SQP method and its method dependent controls.

Description Keyword Associated Data | Status Default
Gradient verify |l evel | integer Optional -1 (no gradient
verification level verification)
Function function_- real Optional 1l.e-10
precision preci sion

Line search i nesearch_- | real Optional 0.9 (inaccurate
tolerance tol erance line search)

Table 5.6: Specification detail for the NPSOL SQP method

5.6 CONMIN Methods

The CONMIN library [Vanderplaats, 1973] is a public domain library of nonlinear programming optimiz-
ers, specifically the Fletcher-Reeves conjugate gradient (DAKOTA’s conmi n_f r cg method) method for
unconstrained optimization, and the method of feasible directions (DAKOTA’s conm n_nf d method) for
constrained optimization. As CONMIN was a predecessor to the DOT commercial library, the algorithm
controls are very similar. DAKOTA provides access to the CONMIN library through the CONMINOpti-
mizer class.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.7 OPT++ Methods 49

5.6.1 CONMIN method independent controls

The interpretations of the method independent controls for CONMIN are essentially identical to those for
DOT. Therefore, the discussion in DOT method independent controls is relevant for CONMIN.

5.6.2 CONMIN method dependent controls

CONMIN does not currently support any method dependent controls.

5.7 OPT++ Methods

The OPT++ library [Meza, 1994] contains primarily gradient-based nonlinear programming optimizers for
unconstrained, bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gra-
dient (DAKOTA’s opt pp_cg method), quasi-Newton (DAKOTA’s opt pp_qg_newt on method), finite
difference Newton (DAKOTA’s opt pp_f d_newt on method), and full Newton (DAKOTA’s opt pp_-
newt on method). The conjugate gradient method is strictly unconstrained, and each of the Newton-based
methods are automatically bound to the appropriate OPT++ algorithm based on the user constraint spec-
ification (unconstrained, bound-constrained, or generally-constrained). In the generally-constrained case,
the Newton methods use a nonlinear interior-point approach to manage the constraints. The library also
contains a direct search algorithm, PDS (parallel direct search, DAKOTA’s opt pp_pds method), which
supports bound constraints. DAKOTA provides access to the OPT++ library through the SNLLOptimizer
class, where "SNLL" denotes Sandia National Laboratories - Livermore.

5.7.1 OPT++ method independent controls

The method independent controls for max_i t er at i ons and max_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed during an
OPT++ optimization. The conver gence_t ol er ance control defines the threshold value on relative
change in the objective function that indicates convergence. The out put verbosity specification con-
trols the amount of information generated from OPT++ executions: the debug setting turns on OPT++’s
internal debug mode and also generates additional debugging information from DAKOTA’s SNLLOpti-
mizer wrapper class. OPT++’s gradient-based methods are not parallel algorithms and cannot directly take
advantage of concurrent function evaluations. However, if nuneri cal _gr adi ent s with met hod_-
sour ce dakot a is specified, a parallel DAKOTA configuration can utilize concurrent evaluations for
the finite difference gradient computations. OPT++’s nongradient-based PDS method can directly exploit
asynchronous evaluations; however, this capability has not yet been implemented in the SNLLOptimizer
class.

The specul at i ve specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the
current point will be used later, the complete data set (all available gradient/Hessian information) can be
computed on every function evaluation. While some of these computations will be wasted, the positive
effects are a consistent parallel load balance and usually shorter wall clock time. The specul ati ve
specification is applicable only when parallelism in the gradient calculations can be exploited by DAKOTA
(it will be ignored for vendor numeri cal gradients).

Lastly, linear constraint specifications are supported by each of the Newton methods (opt pp_new on,
opt pp_qg_newt on,opt pp_fd_newt on,and opt pp_g_newt on); whereas opt pp_cg must be un-
constrained and opt pp_pds can be, at most, bound-constrained. Specification detail for the method
independent controls is provided in Tables 5.1 through 5.4.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

50 Method Commands

5.7.2 OPT++ method dependent controls

OPT++’s method dependent controls are max_st ep, gradi ent _t ol erance, sear ch_net hod,
nmerit_function, central _path, stepl ength_to_boundary, centering_paraneter,
and search_schene_si ze. The max_st ep control specifies the maximum step that can be taken
when computing a change in the current design point (e.g., limiting the Newton step computed from
current gradient and Hessian information). It is equivalent to a move limit or a maximum trust region
size. The gr adi ent _t ol er ance control defines the threshold value on the L2 norm of the objective
function gradient that indicates convergence to an unconstrained minimum (no active constraints). The
gr adi ent _t ol er ance control is defined for all gradient-based optimizers.

max_st ep and gr adi ent _t ol er ance are the only method dependent controls for the OPT++ conju-
gate gradient method. Table 5.7 covers this specification.

Description Keyword Associated Data | Status Default
OPT++ conjugate | opt pp_cg none Required N/A
gradient method

Maximum step max_step real Optional 1000.
size

Gradient gradi ent - real Optional l.e-4
tolerance tol erance

Table 5.7: Specification detail for the OPT++ conjugate gradient method

The sear ch_net hod control is defined for all Newton-based optimizers and is used to select be-
tween trust _regi on, gradi ent _based | i ne_search, and val ue_based | i ne_search
methods. The gr adi ent _based_| i ne_sear ch option uses the line search method proposed by
[More and Thuente, 1994]. This option satisfies sufficient decrease and curvature conditions; whereas,
val ue_base | i ne_sear ch only satisfies the sufficient decrease condition. At each line search iter-
ation, the gr adi ent _based_| i ne_sear ch method computes the function and gradient at the trial
point. Consequently, given expensive function evaluations, the val ue_based_| i ne_sear ch method
is preferred to the gr adi ent _based_| i ne_sear ch method. Each of these Newton methods addi-
tionally supports the t r _pds selection for unconstrained problems. This option performs a robust trust
region search using pattern search techniques. Use of a line search is the default for bound-constrained
and generally-constrained problems, and use of at r ust _r egi on search method is the default for un-
constrained problems.

The nerit_function, central _path, steplength_to_boundary, and centering_-
par aret er selections are additional specifications that are defined for the solution of generally-
constrained problems with nonlinear interior-point algorithms. A nerit_functi on is a function in
constrained optimization that attempts to provide joint progress toward reducing the objective function and

satisfying the constraints. Valid string inputs are "el_bakry", "argaez_tapia", or "“van_shanno", where user
input is not case sensitive in this case. Details for these selections are as follows:

e The "el_bakry" merit function is the L2-norm of the first order optimality conditions for the nonlinear
programming problem. The cost per linesearch iteration is n+1 function evaluations. For more
information, see [El-Bakry et al., 1996].

e The "argaez_tapia" merit function can be classified as a modified augmented Lagrangian function.
The augmented Lagrangian is modified by adding to its penalty term a potential reduction function
to handle the perturbed complementarity condition. The cost per linesearch iteration is one function
evaluation. For more information, see [Tapia and Argaez].

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods 51

e The "van_shanno" merit function can be classified as a penalty function for the logarithmic barrier
formulation of the nonlinear programming problem. The cost per linesearch iteration is one function
evaluation. For more information see [Vanderbei and Shanno, 1999].

If the function evaluation is expensive or noisy, set the merit _functi on to "argaez_tapia" or "van_-
shanno".

The cent r al _pat h specification represents a measure of proximity to the central path and specifies an
update strategy for the perturbation parameter mu. Refer to [Argaez et al., 2002] for a detailed discussion
on proximity measures to the central region. Valid options are, again, "el_bakry", "argaez_tapia", or "van_-
shanno", where user input is not case sensitive. The default value for cent r al _pat h is the value of
merit_functi on (either user-selected or default). The st epl engt h_t o_boundar y specification
is a parameter (between 0 and 1) that controls how close to the boundary of the feasible region the algorithm
is allowed to move. A value of 1 means that the algorithm is allowed to take steps that may reach the
boundary of the feasible region. If the user wishes to maintain strict feasibility of the design parameters
this value should be less than 1. Default values are .8, .99995, and .95 for the "el_bakry", "argaez_-
tapia"”, and "van_shanno" merit functions, respectively. The cent eri ng_par anet er specification is a
parameter (between 0 and 1) that controls how closely the algorithm should follow the “central path". See
[Wright] for the definition of central path. The larger the value, the more closely the algorithm follows the
central path, which results in small steps. A value of 0 indicates that the algorithm will take a pure Newton

step. Default values are .2, .2, and .1 for the "el_bakry", "argaez_tapia", and "van_shanno" merit functions,
respectively.

Table 5.8 provides the details for the Newton-based methods.

The sear ch_schene_si ze is defined for the PDS method to specify the number of points to be used
in the direct search template. PDS does not support parallelism at this time due to current limitations in the
OPT++ interface. Table 5.9 provides the detail for the parallel direct search method.

5.8 SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 2001a; Hart, W.E., 2001b] contains
a variety of nongradient-based optimization algorithms, with an emphasis on stochastic global meth-
ods. SGOPT currently includes the following global optimization methods: evolutionary algorithms
(sgopt _pga_real, sgopt _pga_int, and sgopt _epsa) and stratified Monte Carlo (sgopt _-
strat _nt). Additionally, SGOPT includes nongradient-based local search algorithms such as Solis-
Wets (sgopt _sol i s_wet s) and pattern search (sgopt _pat t er n_sear ch). With the exception of
the unconstrained sgopt _sol i s_wet s method, each of the SGOPT methods support bound constraints.
DAKOTA provides access to the SGOPT library through the SGOPTOptimizer class.

5.8.1 SGOPT method independent controls

The method independent controls for max_i t er ati ons and nax_f uncti on_eval uati ons limit
the number of major iterations and the number of function evaluations that can be performed during an
SGOPT optimization. The conver gence_t ol er ance control defines the threshold value on relative
change in the objective function that indicates convergence. The out put verbosity specification controls
the amount of information generated by SGOPT: the si | ent, qui et , and nor nal settings correspond
to minimal reporting from SGOPT, whereas the ver bose setting corresponds to a higher level of in-
formation, and debug outputs method initialization and a variety of internal SGOPT diagnostics. The
majority of SGOPT’s methods have independent function evaluations that can directly take advantage

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

52

Method Commands

Description Keyword Associated Data | Status Default
OPT++ optpp_q_- none Required group N/A
Newton-based newt on |
methods optpp_fd_-
newt on |
opt pp_newt on
Search method val ue_- none Optional group trust_region
based_line_- (unconstrained),
search | val ue_-
gradi ent - based line_-
based |line_- search
search | (bound/general
trust_region constraints)
|tr_pds
Maximum step max_step real Optional 1000.
size
Gradient gradi ent - real Optional l.e-4
tolerance tol erance
Merit function nerit_- string Optional "argaez_-
function tapi a"
Central path central _path | string Optional value of
nerit_-
function
Steplength to steplength - | real Optional Merit function
boundary t o_boundary dependent: 0.8
(el_bakry),
0.99995
(argaez_tapia),
0.95
(van_shanno)
Centering centering_- real Optional Merit function
parameter par anet er dependent: 0.2
(el_bakry), 0.2
(argaez_tapia),
0.1 (van_shanno)

Table 5.8: Specification detail for OPT++ Newton-based optimization methods

of DAKOTA’s parallel capabilities. Only sgopt _sol i s_wet s and certain expl or at ory_noves
options in sgopt _pattern_search (nul ti _step, best _first, biased_best_first,and
adapti ve_patt er n; see Pattern search) are inherently serial. The parallel methods automatically uti-
lize parallel logic when the DAKOTA configuration supports parallelism. Lastly, neither specul ati ve
gradients nor specialized handling of linear constraints are currently supported with SGOPT since SGOPT
methods are nongradient-based and support, at most, bound constraints. Specification detail for method
independent controls is provided in Tables 5.1 through 5.4.

5.8.2 SGOPT method dependent controls

sol ution_accuracy and max_cpu_ti ne are method dependent controls which are defined for all
SGOPT methods. Solution accuracy defines a convergence criterion in which the optimizer will terminate
if it finds an objective function value lower than the specified accuracy. The maximum CPU time setting is
another convergence criterion in which the optimizer will terminate if its CPU usage in seconds exceeds the

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods 53

Description Keyword Associated Data | Status Default
OPT++ parallel opt pp_pds none Required group N/A
direct search

method

Search scheme search_- integer Optional 32

size schene_si ze

Table 5.9: Specification detail for the OPT++ PDS method

specified limit. Table 5.10 provides the specification detail for these recurring method dependent controls.

Description Keyword Associated Data | Status Default
Desired solution sol ution_- real Optional - DBL_MAX
accuracy accuracy

Maximum max_cpu_tine | real Optional unlimited CPU
amount of CPU

time

Table 5.10: Specification detail for SGOPT method dependent controls

Each SGOPT method supplements the settings of Table 5.10 with controls which are specific to its partic-
ular class of method.

5.8.3 Evolutionary Algorithms

DAKOTA currently provides three types of evolutionary algorithms (EAs): a real-valued genetic algo-
rithm (sgopt _pga_r eal), an integer-valued genetic algorithm (sgopt _pga_i nt), and an evolution-
ary pattern search technique (sgopt _epsa), where "real-valued" and "integer-valued" refer to the use of
continuous or discrete variable domains, respectively (the response data are real-valued in all cases).

The basic steps of an evolutionary algorithm are as follows:

1. Select an initial population randomly and perform function evaluations on these individuals
2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new_sol ut i ons_gener at ed new individuals from
the selected parents
o Apply crossover with a fixed probability from two selected parents
e Ifcrossover is applied, apply mutation to the newly generated individual with a fixed probability
o If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals
5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits
are exceeded

Controls for seed, population size, selection, and replacement are identical for the three EA methods,
whereas the crossover and mutation controls contain slight differences and the sgopt _epsa specifica-
tion contains an additional num parti ti ons input. Table 5.11 provides the specification detail for the
controls which are common between the three EA methods.

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

54 Method Commands

Description Keyword Associated Data | Status Default
EA selection sgopt _pga_- none Required group N/A
real |
sgopt _pga_-
int |
sgopt _epsa
Random seed seed integer Optional randomly
generated seed
Number of popul ation_- | integer Optional 100
population si ze
members
Selection sel ection_- rank | Optional proportional
pressure pressure proportional
Replacement type random| chc | Optional group random=20
repl acenent -| elitist
type
Random random integer Required N/A
replacement
CHC replacement | chc integer Required N/A
type
Elitist elitist integer Required N/A
replacement type
New solutions new - integer Optional popul ati on_-
generated sol utions_- si ze -
gener at ed repl acenent _-
si ze

Table 5.11: Specification detail for the SGOPT EA methods

The random seed control provides a mechanism for making a stochastic optimization repeatable. That is,
the use of the same random seed in identical studies will generate identical results. The popul ati on_-
si ze control specifies how many individuals will comprise the EA’s population. The sel ecti on_-
pr essur e controls how strongly differences in "fitness" (i.e., the objective function) are weighted in the
process of selecting "parents" for crossover:

e the r ank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

e the proporti onal setting uses a proportional scaling of probability of selection based on the
relative value of each individual’s objective function within the population

The r epl acement _t ype controls how current populations and newly generated individuals are com-
bined to create a new population. Each of the r epl acenent _t ype selections accepts an integer value,
which will is referred to below and in Table 5.11 as the r epl acenent _si ze:

e The random setting (the default) creates a new population using (a) r epl acenment _si ze
randomly selected individuals from the current population, and (b) popul ati on_si ze -
r epl acenent _si ze individuals randomly selected from among the newly generated individu-
als (the number of which is optionally specified using new_sol uti ons_gener at ed) that are
created for each generation (using the selection, crossover, and mutation procedures).

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

5.8 SGOPT Methods

55

e The CHC setting creates a new population using (a) the r epl acenment _si ze best individu-
als from the combination of the current population and the newly generated individuals, and (b)
popul ati on_si ze -repl acenent _si ze individuals randomly selected from among the re-
maining individuals in this combined pool. CHC is the preferred selection for many engineering

problems.

e Theeliti st setting creates a new population using (a) the r epl acement _si ze best individu-
als from the current population, (b) and popul ati on_si ze - r epl acenent _si ze individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good so-
lution from the newly generated individuals if it is not randomly selected for replacement; however,
the default new_sol ut i ons_gener at ed value is set such that the entire set of newly generated
individuals will be selected for replacement.

Table 5.12, Table 5.13, and Table 5.14 show the controls which differ between sgopt _pga_real ,
sgopt _pga_i nt,and sgopt _epsa, respectively.

Description Keyword Associated Data | Status Default
Crossover type crossover _- t wo_poi nt | Optional group t wo_poi nt
type bl end |
uni form
Crossover rate crossover _- real Optional 0.8
rate
Mutation type nmut ation_- repl ace_- Optional group of fset -
type uni f or m| nor mal
of fset -
nor mal |
of fset -
cauchy |
of fset -
uni f or m|
of fset -
triangul ar
Mutation scale nmut ati on_- real Optional 0.1
scal e
Mutation di mensi on_- real Optional powlatf%
dimension rate rate -
Mutation popul ation_- | real Optional 1.0
population rate rate
Non-adaptive non_adaptive | none Optional Adaptive
mutation flag mutation

Table 5.12: Specification detail for SGOPT real-valued genetic algorithm crossover and mutation

The cr ossover _t ype controls what approach is employed for combining parent genetic information
to create offspring, and the cr ossover _r at e specifies the probability of a crossover operation being
performed to generate a new offspring. SGOPT supports two generic forms of crossover, t wo_poi nt
and uni f or m which generate a new individual through coordinate-wise combinations of two parent in-
dividuals. Two-point crossover divides each parent into three regions, where offspring are created from the

Generated on Wed Jul 21 21:33:19 2004 for DAKOTA by Doxygen

56

Method Commands

Description Keyword Associated Data | Status Default
Crossover type crossover _- t wo_poi nt | Optional group t wo_poi nt
type uni form
Crossover rate crossover _- real Optional 0.8
rate
Mutation type nmut ati on_- repl ace_- Optional group repl ace_-
type uni f or m| uni form
of fset -
uni form
Mutation range nmut ati on_- integer Optional 1
range
Mutation di mensi on_- real Optional populatf%
dimension rate rate B
Mutation popul ation_- | real Optional 1.0
population rate rate

Table 5.13: Specification detail for SGOPT integer-valued genetic algorithm crossover and mutation

combination of the middle region from one parent and the end regions from the other parent. Since SGOPT
does not utilize bit representations of variable values, the crossover points only occur on coordinate bound-
aries, never within the bits of a particular coordinate. Uniform crossover creates offspring through random
combination of coordinates from the two parents. The sgopt _pga_r eal optimizer supports a third op-
tion, the bl end crossover method, which generates a new individual randomly along the multidimensional
vector connecting the two parents.

The mut ati on_t ype controls what approach is employed in randomly modifying design variables
within the EA population. Each of the mutation methods generates coordinate-wise changes to individ-
uals, usually by adding a random variable to a given coordinate value (an "offset" mutation), but also by
replacing a given coordinate value with a random variable (a "replace” mutation). The popul ati on_-
r at e controls the probability of mutation being performed on an individual, both for new individuals
generated by crossover (if crossover occurs) and for individuals from the existing population (if crossover
does not occur; see algorithm description in Evolutionary Algorithms). The di mensi on_r at e specifies
the probabilities that a given dimension is changed given that the individual is having mutation applied
to it. The default di mensi on_r at e uses the special formula shown in the preceding tables, where n
is the number of design variables and e is the natural logarithm constant. The mut ati on_scal e spec-
ifies a scale factor which scales mutation offsets for sgopt _pga_real and sgopt _epsa; thisis a
fraction of the total range of each dimension, so nmut at i on_scal e is a relative value between 0 and 1.
The mut at i on_r ange provides an analogous control for sgopt _pga_i nt, but is not a relative value
in that it specifies the total integer range of the mutation. The of f set _nor mal , of f set _cauchy,
of fset _uni formandof f set _tri angul ar mutation types are "offset" mutations in that they add
a 0-mean random variable with a normal, cauchy, uniform, or triangular distribution, respectively, to the ex-
isting coordinate value. These offsets are limited in magnitude by mut at i on_scal e. Ther epl ace_-
uni f or mmutation type is not limited by mut at i on_scal e; rather it generates a replacement value for
a coordinate using a uniformly distributed value over the total range for that coordinate. The real-valued
genetic algorithm supports each of these 5 mutation types, and integer-valued genetic algorithm supports
the repl ace_u